final_proceeding_IFA_2021_ A An Arief Jusuf.pdf

by A An Arief Jusuf

Submission date: 30-Mar-2024 08:36PM (UTC+0700)

Submission ID: 2335277299

File name: final_proceeding_IFA_2021__A_An_Arief_Jusuf.pdf (935.91K)

Word count: 5176

Character count: 23402

Proceeding

7th INDONESIAN FINANCE ASSOCIATION INTERNATIONAL CONFERENCE

Finance, Capital Market, and Corporate Governance in the Digital Transformation Era

ISSN 2548-80606

Conference Proceedings

THE 7th INDONESIAN FINANCE ASSOCIATION **INTERNATIONAL CONFERENCE 2021**

Board of Editors:

Prof. Dr. Eduardus Tandelilin

Prof. Dr. Irwan Adi Ekaputra

Prof. Dr. Mamduh M Hanafi

Prof. Dr. Tri Gunarsih

Dr. Irwan Trinugroho

Dr. Mutamimah

Dr. I Wayan Nuka Lantara

Dr. Bowo Setiyono

Dr. Eddy Junarsin

Dr. Leo Indra Wardhana

Cet. 1. Indonesia Finance Association, 2022

200 hlmn; 21x29,7 cm

ISSN 25480606

secretariat@ifa.or.id

www.ifa.or.id

Magister Management Building 3rd floor, FEB UGM Yogyakarta

Jl. Teknika Utara, Yogyakarta, Indonesia 55281

PREFACE

We are very grateful to God Almighty for his grace that the 7th Indonesian Finance Association (IFA) International Conference was held successfully on October 6-7, 2021. The 7th IFA International Conference was held virtually, supported by our generous host, the Indonesian Stock Exchange (IDX).

The theme of this conference is "Finance, Capital Market, and Corporate Governance in the Digital Transformation Era". The COVID-19 pandemic has pushed almost all industries sector to be digital for almost two years now. As the result, digitalization has grown even more massively, especially in the financial industry that, consequently, has also caused numerous changes in life beside the pandemic itself. How digitalization shape corporates and investors' behavior and how it affects financial stability are still the big questions. The conference was a great opportunity to share initial successes (and mishaps) that each of us can learn from.

We hope our conference can uncover some of the digital effects and challenges in the finance field. Nevertheless, most importantly, we will also foresee what the future holds for financial markets.

This event will not be a success without the close collaboration between the Indonesian Finance Association and the Self-Regulatory Organization of Indonesia's Capital Market as the main sponsor.

Finally, we would like to thank all participants and presenters who have been supporting the Indonesian Finance Association conference. We have a total of 43 submitted papers from 6 countries, Bangladesh, Greece, Indonesia, Macao, Mexico, and the United Kingdom. After a process of double-blind review, we hand-picked 39 high-quality articles to be presented at the conference. From these 39 articles, there were 15, from four countries, have agreed to include their full paper in the proceedings.

We sincerely hope that these proceedings will benefit all the participants and readers. We welcome any suggestions and constructive feedback to improve the next IFA conference and proceedings, and we look forward to seeing you again.

Yogyakarta, December 2021

Editors

SYSTEMATIC RISK ON STOCKS IN IDX30 AT PANDEMIC DISTRESS ERA

A An Arief Jusufa*

ABSTRACT

This research aims to estimate systematic risk using Ordinary Least Square and Quantile Regression on IDX30 members. The equations from Ordinary Least Square and Quantile Regression are compared to be filtered with Hannan-Quinn Criteria. With 23 stocks as the sample in this research, with the observation from March 2020 till the end of July 2021, the results show that some estimated equations for stock return have constant parameters significantly. The results from this research describe the systematic risk of individual stock return and minor information about the sub-sector of industry classification, which ranked by the sample.

Keywords: Ordinary Least Square, Quantile Regression, Hannan-Quinn, Systematic Risk.

1. INTRODUCTION

IDX30 was composed on April $23^{\rm rd}$, 2012, which consists of the 30 largest capitalized stocks in LQ45. Stocks selection is held every beginning of February and August. Selection criteria are transaction value, transaction frequency, the sum of transaction days, and market capitalization. Qualitative criteria are financial condition, growth prospect, and other criteria connected with company growth.

The pandemic, which began in February 2020 in Indonesia, has disruptive effects. Numerous sectors have been declined since 2020. These effects are still ongoing with fluctuating patterns in the stock market—a systematic risk commonly known as beta. Systematic risk is an external factor which uncontrollable by the firm. The firms whose stocks traded on the stock market would have an uncommon situation than before the pandemic era.

Indonesia Composite Index fell approximately 35% from 6013.699 to 3911.716 in March 2021. After sharply declining, the Indonesia Composite Index gradually has risen till now. Some stocks have not been recovered to the price before. The disruption of company value can be caused by the global economic condition.

The market model specifies a relationship between the returns for individual assets and a market factor. Blume (1970) stated the empirical results suggest that the choice of a particular method of assessing future performance or predictive distributions of future returns of portfolios using historical data is of consequential importance in obtaining accurate

^a Widya Kartika University, Surabaya Indonesia

assessments. Black (1972) had concluded the traditional form of the Capital Asset Pricing Model (CAPM) states that the expected excess return on a security is equivalent to its level of systematic risk times the expected excess return on the market portfolio.

CAPM has limitations about the measurement and has difficulties implementing valid tests of the model (Fama and French, 2004). Fama and French (2004) conclude that most of the important models are built on unrealistic assumptions which must be practically tested. The CAPM risk-return relationship has been tested empirically, the empirical evidence is generally mixed (e.g., Lintner, 1965; Black, 1972; Levy, 1978).

Although the CAPM is criticized for the assumptions of the model, such as unrestricted risk-free borrowing and lending, the investors only care about the risk and return of one-period portfolio returns. Elbannan (2014) has concluded Market Beta explains the expected returns, in addition to the proxy of the market portfolio of all risky assets. Many industries depend on this model to determine its price in the market.

In this research, the risk-return relationship between stock returns and the market return is reexamined using the Ordinary Least Square method compared to Quantile Regression. The Quantile Regression is a statistical term describing a division of observations into certain defined intervals based upon the values of the data, and the return quantile of a specific stock could show the relative magnitude of its return in comparison with the entire set of stock observations.

2. LITERATURE REVIEW AND HYPOTHESIS DEVELOPMENT

Zero Beta Model

The index model was suggested by Sharpe (1963) and Gibbons (1982). The risk is usually measured by variability between the asset's return and an appropriately defined hedging portfolio.

$$E(\widetilde{R}_{it}) = \gamma_0 + \sum_{j=1}^{K} \beta_{ij} \gamma_j$$

$$i = 1, 2, 3, ..., N$$
(1)

Where:

 $E(\widetilde{R}_{it})$ = expected return on the i-th security in period t;

 γ_0 = risk-free rate (if it exists) or the expected return on a zero-beta portfolio.

 β_{ij} = a measure (As defined by a particular model) of association between the returns on security i and the returns on a portfolio designed to hedge risk j.

N = number of securities

K = number of risks.

The b_{ij} usually are not observable. This method relies on proxies or estimates that necessarily contain measurement error.

Gibbons (1982) had formulated statistical statement for his research:

$$\widetilde{R}_{it} = \alpha_i + \beta_i \ \widetilde{R}_{mt} + \widetilde{\eta}_{it} \quad , \quad i = 1, 2, ..., N \quad , \quad t = 1, 2, ..., T \quad ...$$
 (2)

Where:

 \widetilde{R}_{it} = return on asset i in period t

 \widetilde{R}_{mt} = return on the market portfolio in period t

 β_{i} = $\frac{\text{cov}(\widetilde{R}_{it},\widetilde{R}_{mt})}{var(\widetilde{R}_{mt})}$

 $\tilde{\eta}_i$ = a random disturbance

Them we can transform equation (2) into equation (3) below.

$$E(\widetilde{R}_{it}) = \alpha_i + \beta_i E(\widetilde{R}_{mt}) \qquad (3)$$

1

Systematic versus Firm-Specific Risk

Focused on risk by separating the actual rate of return on any security (i) into the sum of its previously expected value plus an unanticipated surprise (Bodie et al., 2018):

$$R_i = E(R_i) + unanticipated surprise$$
 (4)

The unanticipated component of the stock return can be due either to unexpected developments in issues that are particular to the firm or to unexpected changes in conditions that affect the broad economy. The market f_1 ctor (m) measures unanticipated developments in the macroeconomy, e_i measures only the firm-specific surprise. As a surprise, it has zero expected value, m and e_i are assumed to be uncorrelated because e_i is firm-specific. It is independent of shocks to the common factor that affect the entire economy. The variance of r_i thus arises from two uncorrelated sources, systematic and firm-specific. The index model can be written as the regression equation:

$$R_{it} = \alpha_i + \beta_i R_{mt} + e_{it}$$
 (5)

The intercept of this equation (α) is the security's expected excess return when the market excess return is zero. Beta (β) is the amount by which the security return tends to increase or decrease for every 1% increase or decrease in the return on the index, and therefore measures the security's sensitivity to the market index. e_i is the zero-mean, firm-specific surprise in the security return in t (residual).

The model is merely a way to describe the typical relation bety en market returns and returns on particular firms. The beta of the market index is 1. Cyclical stocks have higher-than-average sensitivity to the broad economy and therefore have betas greater than 1. The betas of defensive stocks are less than 1.

Quantile Regression

Koenker and Bassett (1978) argued that the conventional least squares estimator might be seriously deficient in linear models with non-Gaussian errors. They introduce a new class of statistics for the linear model, which is named "regression quantiles" since it appears to have analogous properties to the ordinary sample quantiles of the location model. Natural

generalizations based on regression quantiles of linear combinations of sample quantiles and trimmed means which appear to have promising robustness properties, are then proposed for the general linear model.

The quantile regression technique is a very powerful tool in uncovering heteroskedasticity in a regression model (Atkins and Ng, 2014). Using quantile regression for the CAPM model with n observations, the individual return (R_{it}) and the market return (R_{mt}) for t=1,2,...,n, the t-th quantile regression coefficients, $\hat{\alpha}_{\tau}$ and $\hat{\beta}_{\tau}$ minimize the following objective function:

$$\sum_{\mathbf{t}: R_{it} - \widehat{\alpha}_{\tau} - \widehat{\beta}_{\tau} R_{mt} \ge 0} \tau \left| R_{it} - \widehat{\alpha}_{\tau} - \widehat{\beta}_{\tau} \right| + \sum_{\mathbf{t}: R_{it} - \widehat{\alpha}_{\tau} - \widehat{\beta}_{\tau} R_{mt} < 0} (1 - \tau) \left| R_{it} - \widehat{\alpha}_{\tau} - \widehat{\beta}_{\tau} \right| \dots \dots (6)$$

where $0 < \tau < 1$ determines the desired conditional quantile of interest.

3. DATA AND METHODS

The weekly data are used to measure the return and the systematic risk (β) . The data are processed using Ordinary Least Square (OLS) Regression and Quantile Regression (QR) using Gretl software.

The individual stock return is counted by:

$$R_{t} = \frac{P_{t} - P_{t-1} + D_{t}}{P_{t-1}}.$$
(7)

Where:

 R_t = the stock return at t period

P_t = the stock price at t period

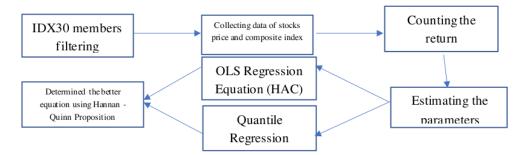
 D_t = the dividend at t period

The market return is counted by:

$$R_{-}IHSG_{t} = \frac{IHSG_{t-1}IHSG_{t-1}}{IHSG_{t-1}}.$$
(8)

Where:

 $IHSG_t$ = the composite index return at t period


 $IHSG_t$ = the composite index value at t period

The equation model:

$$R_{_stock\ code,t} = \alpha_{stock\ code,t} + \beta_{stock\ code,t} R_{_IHSG,t} + e_{it}$$
(9)

The beta, the regressor parameters and error term are estimated using Gretl statistical software.

The research framework:

HAC covariance estimation provides a statistically valid way to use least squares when the data are also autocorrelated. Standard errors will be robust with respect to both heteroskedasticity and autocorrelation. This estimator abbreviation is HAC, which stands for heteroskedasticity autocorrelated consistent (Adkins, 2018). The significant level of p-value in this research are 0.05 and 0.01 for estimated parameters.

The Hannan-Quinn criteria are used to determine the best equation for each stock return equation. Suzuki (2012) proved that the Hannan-Quinn proposition is true for linear regression and autoregression, consistent with Hannan and Quinn (1979). The equations compared by Hannan-Quinn value, which has the smallest value, were chosen.

Table 1. Sample

		1
Number	Stocks Code	Name
1	ADRO	Adaro Energy Tb
2	ANTM	Aneka Tambang Tbk.
3	ASII	Astra International Tbk.
4	BBCA	Bank Central Asia Tbk.
5	BBNI	Bank Negara Indonesia (Persero) Tbk.
6	BBRI	Bank Rakyat Indonesia (Persero) Tbk.
7	BBTN	Bank Tabungan Negara (Persero) Tbk.
8	BMRI	Bank Mandiri (Persero) Tbk.
9	CPIN	Charoen Pokphand Indonesia Tbk.
10	GGRM	Gudang Garam Tbk.
11	HMSP	H.M. Sampoerna Tbk.
12	ICBP	Indofood CBP Sukses Makmur Tbk.
13	INDF	Indofood Sukses Makmur Tbk.
14	INKP	Indah Kiat Pulp & Paper Tbk.
15	INTP	Indocement Tunggal Prakarsa Tbk.
16	KLBF	Kalbe Farma Tbk.
17	MNCN	Media Nusantara Citra Tbk.
18	PGAS	Perusahaan Gas Negara Tbk.
19	PTBA	Bukit Asam Tbk.
20	SMGR	Semen Indonesia (Persero) Tbk.
21	TLKM	Telekomunikasi Indonesia (Persero) Tbk.
22	UNTR	United Tractors Tbk.
23	UNVR	Unilever Indonesia Tbk.

Source: Author computation.

4. RESULTS

Data highlighted in yellow indicates the lowest value of Hannan-Queen criteria for each stock return equation.

Table 2. Ordinary Least Square and Quantile Regression Results

		R_IHSG									
	Ordi	Ordinary Least Square (OLS) with HAC						ntile Regres	sion (QR) with HA	C
Stock Return Code	const	p- value	Beta	p- value	Hannan- Quinn	tau (τ)	const	p-value	Beta	p- value	Hannan- Quinn
				<0.0001	-228.3164	0.05	-0.0787	< 0.0001	1.914	< 0.0001	-201.2328
	R_ADRO 0.0031 0.589					0.25	-0.0219	0.0104	1.321	< 0.0001	-232.6358
R_ADRO		0.5891	1.5386			0.5	-0.0017	0.7653	1.048	< 0.0001	-238.8773
						0.75	0.0271	0.0123	1.124	0.0005	-210.8686
						0.95	0.0886	0.0011	1.315	< 0.0001	-139.6188

	R_IHSG										
	Ordi	nary Leas	t Square	(OLS) wit	h HAC	Quantile Regression (QR) with HAC					
Stock Return Code	const	p- value	Beta	p- value	Hannan- Quinn	tau (τ)	const	p-value	Beta	p- value	Hannan- Quinn
						0.05	-0.0749	0.0008	2.188	<0.0001	-147.0449
						0.25	-0.0274	0.0165	2.07	< 0.0001	-181.794
R_ANTM	0.0202	0.0224	2.2618	< 0.0001	-170.8386	0.5	0.0058	0.4648	1.884	<0.0001	-183.0573
						0.75	0.0493	0.0181	2.162	<0.0001	-143.345
						0.95	0.1590	< 0.0001	2.726	<0.0001	-85.0229
						0.05	-0.0637	< 0.0001	1.146	<0.0001	-251.3098
						0.25	-0.0250	0.0002	1.249	< 0.0001	-283.492
R_ASII	-0.0025	0.5753	1.3339	< 0.0001	-279.9958	0.5	-0.0054	0.2121	1.313	< 0.0001	-286.5111
						0.75	0.0154	0.0712	1.398	< 0.0001	-262.5116
						0.95	0.0592	< 0.0001	1.806	0.0014	-195.2404
						0.05	-0.0388	0.0004	1.252	<0.0001	-266.5675
						0.25	-0.0161	<0.0001	0.911	<0.0001	-335.8155
R_BBCA	-0.0010	0.6960	1.0814	<0.0001	-338.6775	0.5	-0.0004	0.8987	0.956	< 0.0001	-339.3471
					0.75	0.0118	0.0162	1.071	<0.0001	-325.8557	
						0.95	0.0481	<0.0001	1.332	<0.0001	-291.5594
						0.05	-0.057	0.0006	1.833	0.0009	-212.5336
				0.25	-0.0285	< 0.0001	<0.0001 1.702 <0.0001	-276.5216			
R_BBNI -0.0039 0.3	0.3514	1.7357	<0.0001	-281.3187	0.5	-0.0073	0.1677	1.559	<0.0001	-280.7184	
						0.75	0.0145	0.0547	1.844	<0.0001	-259.9036
						0.95	0.0588	< 0.0001	1.583	<0.0001	-223.1379
						0.05	-0.0589	0.0031	1.898	0.0135	-200.9607
						0.25	-0.0195	0.0004	1.55	<0.0001	-270.9243
R_BBRI	-0.0009	0.8260	1.4509	<0.0001	-271.842	0.5	-0.0027	0.5581	1.584	<0.0001	-284.4970
						0.75	0.0183	0.0273	1.299	<0.0001	-264.7477
						0.95	0.0600	0.0003	1.231	<0.0001	-189.4551
						0.05	-0.0915	< 0.0001	1.371	<0.0001	-169.3953
						0.25	-0.0328	0.0007	1.776	<0.0001	-223.0865
R_BBTN	-0.0020	0.7765	1.7604	<0.0001	-202.6275	0.5	-0.0096	0.1465	1.732	< 0.0001	-225.2635
						0.75	0.0243	0.0375	2.048	<0.0001	-196.4400
						0.95	0.1024	0.0343	2.648	<0.0001	-120.7670
						0.05	-0.0573	<0.0001	1.655	<0.0001	-237.2002
						0.25	-0.0214	0.0006	1.4530	< 0.0001	-288.2377
R_BMRI	-0.0021	0.5931	1.3952	<0.0001	-297.8855	0.5	0.0022	0.5969	1.262	<0.0001	-302.3740
						0.75	0.014	0.0065	1.23	< 0.0001	-289.9447
						0.95	0.0500	0.0001	1.058	0.0094	-232.4493
				286 <0.0001		0.05	-0.0573	<0.0001	1.297	<0.0001	-231.2286
R_CPIN	0.0008	0.8736	1.4286		-247.2233	0.25	-0.0290	<0.0001	1.198	<0.0001	-257.7769
						0.5	-0.0039	0.5173	1.516	<0.0001	-250.2733
				0.75	0.0264	0.0039	1.674	<0.0001	-227.2446		

	R_IHSG										
	Ordi	nary Leas	t Square	(OLS) wit	h HAC	Quantile Regression (QR) with HAC					
Stock Return Code	const	p- value	Beta	p- value	Hannan- Quinn	tau (τ)	const	p-value	Beta	p- value	Hannan- Quinn
						0.95	0.0726	0.0104	1.801	0.0504	-149.8169
						0.05	-0.0883	0.0001	0.36	0.0777	-185.5474
						0.25	-0.0298	< 0.0001	0.9040	<0.0001	-253.8087
R_GGRM	-0.005	0.4267	0.8795	< 0.0001	-231.3622	0.5	-0.0136	0.0067	0.892	<0.0001	-256.9441
						0.75	0.0138	0.0879	1.207	<0.0001	-217.3999
						0.95	0.1025	0.0334	0.145	0.9391	-121.4278
						0.05	-0.0845	<0.0001	0.412	0.2499	-215.2878
						0.25	-0.0304	< 0.0001	1.026	<0.0001	-249.8039
R_HMSP	-0.0064	0.1552	1.0001	< 0.0001	-247.7344	0.5	-0.0103	0.0355	1.013	<0.0001	-255.0554
						0.75	0.0116	0.2773	0.99	0.0007	-230.0337
						0.95	0.0851	0.0001	1.497	0.0047	-161.2412
						0.05	-0.0482	0.1096	0.923	<0.0001	-205.6694
						0.25	-0.0233	< 0.0001	0.487 0.0173	-280.7307	
R_ICBP	R_ICBP -0.0037 0.3288 0.5939	0.3288	0.5939	0.0040	-281.4556	0.5	-0.0037	0.3645	0.509	<0.0001	-298.3583
						0.75	0.0126	0.0556	0.74	0.0015	-283.4656
					0.95	0.0539	0.0015	0.48	0.4000	-225.6672	
						0.05	-0.0489	0.0086	0.661	0.0510	-224.5401
					0.25	-0.0298	< 0.0001	0.823	<0.0001	-279.2667	
R_INDF	-0.0023	0.5957	0.8017	<0.0001	-278.6546	0.5	-0.0012	0.8303	0.669	0.0004	-279.1109
						0.75	0.0176	0.0118	0.565	<0.0001	-262.8973
						0.95	0.0651	< 0.0001	1.007	<0.0001	-216.8761
				85 <0.0001	-209.3920	0.05	-0.0874	< 0.0001	2.123	<0.0001	-189.9449
		0.7308	1.9585			0.25	-0.0429	<0.0001	1.714	<0.0001	-203.9722
R_INKP	0.0026					0.5	-0.0091	0.3875	1.94	<0.0001	-201.8706
						0.75	0.0427	0.0003	2.103	<0.0001	-186.4326
						0.95	0.1168	< 0.0001	1.765	0.0001	-135.1061
						0.05	-0.0858	0.0004	1.006	0.2028	-179.7697
		0.1334	1.3577	<0.0001		0.25	-0.0309	< 0.0001	1.407	<0.0001	-265.3902
R_INTP	-0.0062				-258.6913	0.5	-0.0122	0.0132	1.43	<0.0001	-270.1446
						0.75	0.0100	0.2871	1.523	<0.0001	-238.9458
						0.95	0.0752	< 0.0001	1.046	0.0147	-192.9738
						0.05	-0.0586	< 0.0001	0.886	0.0361	-239.4645
						0.25	-0.0345	<0.0001	0.903	0.0005	-263.8976
R_KLBF	-0.0007	0.8770	0.8551	<0.0001	-249.2072	0.5	-0.0060	0.3311	0.438	0.0420	-261.4990
					[0.75	0.0214	0.0132	0.6710	0.0036	-230.6418
						0.95	0.0794	0.0510	0.975	0.0007	-155.0059
						0.05	-0.0744	<0.0001	1.2300	<0.0001	-207.6212
R_MNCN	-0.0074	0.0974	1.4330	<0.0001	-221.4045	0.25	-0.0462	< 0.0001	1.157	<0.0001	-234.7636
						0.5	-0.0186	0.0194	1.231	<0.0001	-223.4886

						R_IHSG						
	Ordinary Least Square (OLS) with HAC						Quantile Regression (QR) with HAC					
Stock Return Code	const	p- value	Beta	p- value	Hannan- Quinn	tau (τ)	const	p-value	Beta	p- value	Hannan- Quinn	
						0.75	0.0196	0.1768	1.461	<0.0001	-193.8353	
						0.95	0.0989	< 0.0001	1.904	<0.0001	-136.1041	
						0.05	-0.0750	< 0.0001	1.827	< 0.0001	-196.0542	
						0.25	-0.0302	0.0009	2.244	<0.0001	-232.9481	
R_PGAS	-0.0031	0.5162	2.1196	< 0.0001	-246.9444	0.5	-0.0002	0.9751	2.001	<0.0001	-246.8816	
						0.75	0.0275	0.0001	2.192	<0.0001	-236.7972	
						0.95	0.0756	0.0005	2.523	<0.0001	-181.9845	
						0.05	-0.0591	< 0.0001	1.041	0.0213	-218.1104	
						0.25	-0.0275	< 0.0001	1.06	<0.0001	-255.5568	
R_PTBA	0.0024	0.6047	1.1399	< 0.0001	-263.4683	0.5	0.0013	0.8115	0.984	<0.0001	-268.5046	
					0.75	0.023	0.0087	1.282	<0.0001	-245.8463		
						0.95	0.0827	< 0.0001	1.31	0.0166	-182.1851	
				0.05	-0.0833	0.0357	1.615	0.1804	-159.2543			
				<0.0001	-227.5511	0.25	-0.0343	< 0.0001	1.322	<0.0001	-228.9389	
R_SMGR	-0.0043	0.4125	1.4424			0.5	-0.0094	0.0807	1.582	<0.0001	-239.7506	
						0.75	0.0181	0.1175	1.541	0.0002	-215.5318	
						0.95	0.094	0.0003	1.484	0.0852	-153.5323	
					-301.4990	0.05	-0.0512	< 0.0001	0.914	< 0.0001	-267.1574	
						0.25	-0.0183	0.0010	0.964	< 0.0001	-293.2977	
R_TLKM	-0.0004	0.9062	1.1076	<0.0001		0.5	-0.0044	0.3683	1.051	<0.0001	-299.0931	
						0.75	0.0262	0.0003	1.102	< 0.0001	-276.5277	
						0.95	0.0654	< 0.0001	1.345	<0.0001	-238.4684	
						0.05	-0.0659	< 0.0001	1.312	0.0004	-227.113	
						0.25	-0.0303	< 0.0001	0.847	< 0.0001	-264.6729	
R_UNTR	0.0023	0.6939	0.7883	< 0.0001	-250.4869	0.5	-0.0075	0.2381	0.779	0.0005	-255.2508	
						0.75	0.0288	0.0046	0.855	0.0068	-225.5978	
					0.95	0.0928	0.0002	0.798	0.3297	-152.09		
						0.05	-0.0709	< 0.0001	0.736	0.1880	-227.8876	
						0.25	-0.0325	< 0.0001	0.73	0.0005	-265.3998	
R_UNVR	-0.0070	0.1049	0.6274	<0.0001	-276.1618	0.5	-0.0083	0.1349	0.565	0.0038	-278.8342	
						0.75	0.0172	0.0099	0.529	0.0106	-260.5426	
						0.95	0.0761	< 0.0001	0.556	0.2381	-196.2854	

Source: Author computation.

	R_IHSG							
Stock Return Code	tau (τ)	const	p-value	Beta	p-value	Hannan- Quinn	Regression Type	
R_ADRO	0.5	-0.0017	0.7653	1.0476	< 0.0001	-238.8773	QR	
R_ANTM	0.5	0.0058	0.4648	1.8841	< 0.0001	-183.0573	QR	
R_ASII	0.5	-0.0054	0.2121	1.3132	< 0.0001	-286.5111	QR	
R_BBCA	0.5	-0.0004	0.8987	0.9564	< 0.0001	-339.3471	QR	
R_BBNI		-0.0039	0.3514	1.7357	< 0.0001	-281.3187	OLS	
R_BBRI	0.5	-0.0027	0.5581	1.5844	<0.0001	-284.4970	QR	
R_BBTN	0.5	-0.0096	0.1465	1.7321	< 0.0001	-225.2635	QR	
R_BMRI	0.5	0.0022	0.5969	1.2617	< 0.0001	-302.3740	QR	
R_CPIN	0.25	-0.0290	< 0.0001	1.1984	< 0.0001	-257.7769	QR	
R_GGRM	0.5	-0.0136	0.0067	0.8924	< 0.0001	-256.9441	QR	
R_HMSP	0.5	-0.0103	0.0355	1.0127	< 0.0001	-255.0554	QR	
R_ICBP	0.5	-0.0037	0.3645	0.5086	< 0.0001	-298.3583	QR	
R_INDF	0.25	-0.0298	<0.0001	0.8229	< 0.0001	-279.2667	QR	
R_INKP		0.0026	0.7308	1.9585	< 0.0001	-209.3920	OLS	
R_INTP	0.5	-0.0122	0.0132	1.4299	< 0.0001	-270.1446	QR	
R_KLBF	0.25	-0.0345	<0.0001	0.9032	0.0005	-263.8976	QR	
R_MNCN	0.25	-0.0462	<0.0001	1.1568	< 0.0001	-234.7636	QR	
R_PGAS		-0.0031	0.5162	2.1196	< 0.0001	-246.9444	OLS	
R_PTBA	0.5	0.0013	0.8115	0.9838	< 0.0001	-268.5046	QR	
R_SMGR	0.5	-0.0094	0.0807	1.5818	< 0.0001	-239.7506	QR	
R_TLKM		-0.0004	0.9062	1.1076	< 0.0001	-301.4990	OLS	
R_UNTR	0.25	-0.0303	<0.0001	0.8474	<0.0001	-264.6729	QR	
R_UNVR	0.5	-0.0083	0.1349	0.5646	0.0038	-278.8342	QR	

Source: Author computation.

All Beta parameters have positive values and are significant at level 0.01 using weekly return data. Some constant parameters (interce) of this equation (α) have significant values at levels 0.01 and 0.05. These results indicated the security's expected excess return when the market excess return is zero. The equations which have significant constant parameters and all from Quantile Regression are:

$$\begin{array}{ll} R_{CPIN} &= -0.0290 + 1.1984 \ R_{IHSG} \ , \tau = 0.25 \ ...$$

$$R_{INTP} = -0.0122 + 1.4299 R_{IHSG}, \tau = 0.50$$
 (14)

$$R_{KLBF} = -0.0345 + 0.9032 R_{IHSG}, \tau = 0.25$$
 (15)

$$R_{MNCN} = -0.0462 + 1.1568 R_{IHSG}, \tau = 0.25$$
 (16)

$$R_{UNTR} = -0.0303 + 0.8474 R_{IHSG}, \tau = 0.25$$
 (17)

The constant parameter has a negative value indicating the stock return under pressure, excluding market return volatility. The firm which has a significant constant parameter (α) has other unknown factors. The lowest constant parameter is held by R_MNCN; the highest is R_HMSP. From Table 4, the lowest β is held by R_ICBP with β = 0.5086, and the highest β is held by R_PGAS with β = 2.1196.

Table 4. Beta Summary from The Lowest

Stock Return Code	Beta	Sub Sector
R_ICBP	0.5086	Food and Beverages
R_UNVR	0.5646	Cosmetics and Household
R_INDF	0.8229	Food and Beverages
R_UNTR	0.8474	Wholesale
R_GGRM	0.8924	Tobacco Manufacturers
R_KLBF	0.9032	Pharmaceutical
R_BBCA	0.9564	Bank
R_PTBA	0.9838	Coal Mining
R_HMSP	1.0127	Tobacco Manufacturers
R_ADRO	1.0476	Coal Mining
R_TLKM	1.1076	Telecommunication
R_MNCN	1.1568	Advertising, Printing, and Media
R_CPIN	1.1984	Animal Feed
R_BMRI	1.2617	Bank
R_ASII	1.3132	Automotive and Components
R_INTP	1.4299	Cement
R_SMGR	1.5818	Cement
R_BBRI	1.5844	Bank
R_BBTN	1.7321	Bank
R_BBNI	1.7357	Bank
R_ANTM	1.8841	Metal and Mineral Mining
R_INKP	1.9585	Pulp and Paper
R_PGAS	2.1196	Energy

Source: Author computation.

5. CONCLUSION

This study estimates the recent condition of firm systematic risk, which is listed in IDX30 from March 2020 till the end of July 2021. The equations were estimated using Ordinary Least Square and Quantile Regression. Quantile Regression method outcome is used more than Ordinary Least Square, after filtering by Hannan-Quinn criteria. The single index model has practically benefited from its simplicity.

Some return of the stock equation has a significant constant parameter (α) , and all have a negative value. The negative value indicates the stock's return is affected by an unsystematic risk, which is unique for each firm. In the pandemic era nowadays, the management decision is very important to make sustainable earnings. The controllable risk should be managed effectively.

Practically, this research can give a description of systematic risk from IDX30 stock members. Investors can be aware of the market volatility which affects the stock's return. The higher value of beta of a stock's return could lead to higher capital losses in the downward market.

REFERENCES

- Adkins, L. C. 2018. *Using Gretl for Principles of Econometrics*. 5th Ed. Available at: http://www.learneconometrics.com/gretl/poe5/using_gretl_for_POE5.pdf
- Atkins, A. B., and P. T. Ng. 2014. "Refining Our Understanding of Beta through Quantile Regressions". *Journal of Risk and Financial Management*, 7: 67-79.
- Black, F. 1972. "Capital Market Equilibrium with Restricted Borrowing". *The Journal of Business*, 45 (3): 444-455.
- Blume, M.E. 1970. "Portfolio Theory: A Step Toward Its Practical Application". *The Journal of Business*, 43 (2): 152-173.
- Bodie, Z., A. Kane, and A. J. Marcus. 2018. *Investments*. 11th Ed. United States of America: McGraw-Hill Education.
- Elbannan, M. A. 2014. "The Capital Asset Pricing Model: An Overview of the Theory". *International Journal of Economics and Finance*, 7 (1): 216-228.
- Fama, E.F., and K. R. French. 2004. "The Capital Asset Pricing Model: Theory and Evidence". Journal of Economic Perspectives, 184 (3): 25-46.
- Gibbons, M. R. 1982. "Multivariate Tests of Financial Models: A New Approach". *Journal of Financial Economics*, 10: 3-27.
- Hannan, E. J., and B. G. Quinn. 1979. "The Determination of the Order of an Autoregression". Journal of the Royal Statistical Society. Series B., 41 (2): 190-195.
- Koenker, R., and G. Basset, Jr. 1978. "Regression Quantiles". Econometrica, 46 (1): 33-50.

- Levy, H. 1978. "Equilibrium in an Imperfect Market: A Constraint on the Number of Securities in the Portfolio". *The American Economic Review*, 68 (4): 643-658.
- Sharpe, W. F. 1963. "A Simplified Model for Portfolio Analysis". *Management Science*, 9 (2): 277-293.
- Suzuki, J. 2012. "The Hannan-Quinn Proposition for Linear Regression". *International Journal of Statistics and Profitability*, 1 (2): 179-185. http://dx.doi.org/10.5539/ijsp.v1n2p179

Internet Sources:

Yahoo, Inc. 2021. https://finance.yahoo.com, accessed July 2021.

Investing.com. 2021. https://id.investing.com/indices/idx-30, accessed July 2021.

PT Kustodian Sentral Efek Indonesia. 2021. https://ksei.co.id, accessed July 2021.

PT Bursa Efek Indonesia. 2021. https://idx.co.id, accessed July 2021.

Proceeding

The 7th Indonesian Finance Association **International Conference**

Indonesian Finance Association 2021

secretariat@ifa.or.id 🖂

www.ifa.or.id 🌑

Magister Management Building 3rd floor, FEB UGM Yogyakarta

Jl. Teknika Utara, Yogyakarta, Indonesia 55281

final_proceeding_IFA_2021_ A An Arief Jusuf.pdf

ORIGINALITY REPORT 13% **INTERNET SOURCES PUBLICATIONS** SIMILARITY INDEX STUDENT PAPERS **PRIMARY SOURCES** dokumen.pub Internet Source Submitted to King's College Student Paper docplayer.net Internet Source www.irmc.eu Internet Source prosiding.unipma.ac.id **Internet Source**

Exclude quotes

On

Exclude matches

< 2%

Exclude bibliography On