PROCEEDING

2nd INTERNATIONAL SEMINAR
ON APPLIED TECHNOLOGY, SCIENCE AND ARTS -
APTECS 2010

THEME
EMPOWERING CREATIVITY THROUGH
SCIENCE AND TECHNOLOGY TO ENHANCE
NATIONS COMPETITIVENESS

GRAHA SEPULUH NOPEMBER, 21-22 December 2010

Organized by :
Institute of Research and Public Services (LPPM)
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
2010
2nd INTERNATIONAL SEMINAR ON APPLIED TECHNOLOGY, SCIENCE, AND ARTS (APTECS 2010)

HONORARY COMMITTEE
Prof. Priyo Suprobo
Prof. I Nyoman Sutantra

GENERAL CHAIRMAN
Dr. Bambang Sampurno

TECHNICAL PROGRAM COMMITTEE
Prof. Imam Robandi, Prof. Paulus Indiyono, Prof. Gamantyo Hendarantoro,
Prof. Djauhar Manfaat, Prof. Noor Endah Mochtar, Prof. Triwulan,
Prof. Happy Ratna S., Prof. R. Y. Perry Burhan, Prof. Mauridhi Hery P.,
Prof. Suprapto, Prof. Djatmiko Ichsani, Prof. I Nyoman Puawan,
Prof. Ali Altway, Prof. Triyogi, Prof. Gege Wibawa,
Prof. Hiyama Takashi (Kumamoto Un.), Mark G Stewart (University of New Castle),
Prof. Wahyudi Priyono (UI), Prof. Rizal Tamin (ITB), Prof. Jamasri (UGM),
Dr. Agus W., Dr. K. Baharudin (UTM), Dr. Essy Arijoeni (UI), Dr. Tri Padmi (ITB)

ORGANIZING COMMITTEE
Dr. Aulia Siti Aisjah, Prof. Danawati
Dr. Ria Asih Sumitro, Dr. I Made Yulistyra Negara
Dr. Wahyudi, Dr. Ispurwono,
Siti Kamilia Aziz, MT., Aunur Rohim, DEA.,
Diah P. Wulandari, MT., Andjrah Hamzah, Msi.,
Hendra Cordova, MT., Dr. rer. nat Fredy Kurniawan, Suyanto, MT.

SECRETARIAT DIVISION
Dr. Kartika Nuswantara, Dewi Amalia, ST.,
Ir. Heri Sudarsono, Indah Purwati, Sucipto
OPENING SPEECH OF THE RECTOR OF ITS

Assalamu’alaikum Wr.Wb. Good Morning Ladies and Gentlemen, Let me, first, praise the Almighty God for the blessings and mercies that have made all we have today possible.

Distinguished guests, esteemed presenters and participants, I would like to extend the warmest welcome to all of you attending the 2nd Internasional Seminar on Applied Technology, Science and Arts (APTECS). I would like to express my profound gratitude to Prof. KISHIDA Satoru for his willingness to join this seminar and to deliver his outstanding lecture on the Prospect of High-Tech Superconducting Oxides and their Surface Analysis Superconductivity, Surface Analysis, and Oxide as the Creative Industry for the Future. This speech would be very contributing to all attending this seminar.

 Acknowledgement must also be given to all the attending plenary sessions, the Ministry of Marine Affairs and Fisheries Republic of Indonesia, Dr. Ir. H Fadel Muhammad Al-Haddar; the Chief Executive Officer, Mr. Dahlan Iskan; and Prof. Wayan Dibya who are willing to spend some of their time that I know they are quite compact in schedule. Thank you for featuring very inspiring experience and insightful notions that would be very contributing to all attending this seminar to build high comprehensive and up to date prior knowledge. Allow me to express my heartfelt gratitude to many sponsors for their generous financial support.

APTECS is an annual seminar hosted by the Institut Teknologi Sepuluh Nopember (ITS) as the forum of academic sharing focusing on various issues in science, technology and arts. As one of the reputable institutions in Indonesia, it is undeniable that active contributions of ITS would be one of the important considerations to deal with the Asean China Free Trade Agreement (ACFTA) that has been launched since the 1st January 2010. At the same time ceasing International competitions would become one of the agenda that must be done by enhancing as well as empowering the national competitiveness in all aspects including engineering, economy, social, and many others. In fact, regardless of the subsequently and surely diminished natural resources, people today need to be able to find brilliant ways to determine success in economy for the future of this beloved country, Indonesia. Dear Audience, the main point of my speech is that this country would take the global challenge only if we are able to develop dynamic cultures and traditions as a nation. And, ITS, in the Golden year anniversary, would become the leading institution to enliven the competition through the development of science, technology, and not to mention cultures and arts.

Now, dear audience, the seminar is all yours. I hope everyone will find the seminar inspiring and enriching, through presentations and discussions on empowering creativity through science and technology to enhance nation competitiveness. Finally, I wish to see you again in the coming 3rd APTECS seminar, December 2011. I wish great happiness, good health, and much success to each of you. Thank you.

Surabaya, 21 Desember 2010
Rector of ITS

Prof. Priyo Suprobo
OPENING SPEECH OF THE CHIEF OF INSTITUTE OF RESEARCH AND PUBLIC SERVICES

First of all, let us praise God whose blessings have enabled us to band together here in the 2nd International APTECS seminar that, this year, is hosted particularly to commemorate the golden year anniversary of the Institut Teknologi Sepuluh Nopember. It is a pleasure for LPPM to welcome you all the professional researchers either from abroad or all over Indonesia. This is the forum where we can meet colleagues from various specialty areas to develop knowledge, technology, and arts that would, of course, contribute to the lives of the mankind.

In the attempt to foster the development of science and technology, basic and applied researches, and industrial researches as well are all the major activities need to be conducted to enhance industrial productivity and competitiveness and to advance our nations unchallenged supremacy; therefore, unless there were any publications and disseminations of research findings and discoveries, researches with high sophisticated findings and contributions would have completely no meaning.

In this global era, without ability to cope with advanced technology and to develop the creativity and innovation, industries would not be able to take part into rigorous competitions. For this reason, then APTECS raises the topic of “Empowering Creativity through Science and Technology to Enhance Nations Competitiveness”.

APTECS is forwarded to be one of the forums for researchers to disseminate and further discuss the results of researches; furthermore, this forum is promoted to enrich creative and innovative ideas that would be worth considering for further researches. Intensive communication as well as discussions in APTECS would continue the process of advancing science, technology, and arts as well. Moreover, further attempt of this form is to promote the implementation of the research finding to give positive contributions for our beloved country.

All researches and their findings are aimed to keep up and further develop our noble cultural values, arts, and human civilization so that, as a member of world societies, our nation would be much dignified among other nations on earth. By hosting this seminar LPPM-ITS is not only to gain the advancement of the science and technology throughout all the findings offered in this forum but at the same time, to encourage and to enhance the arts and cultural values of this country that would fruitfully signify our existence as a nation.

This academic forum meets annually at the end of the year, and next year we would welcome you to see us again in the 3rd APTECS International Seminar that would offer more laborious topics. On behalf of LPPM-ITSI would like to express my deepest gratitude to all presenters and participants, and I wish a productive and inspiring seminar.

Surabaya, 21 Desember 2010

Prof. Ir. I Nyoman Sutantra MSc.PhD
The Chief of LPPM-ITS
OPENING SPEECH OF THE COMMITTEE CHAIRMAN

Rector of ITS,
Dr. Ir. H. Fadel Muhammad, Minister of the Ministry of Marine Affairs and Fisheries Ministry
Prof. KISHIDA Satoru from Tottory University Japan
Prof. Wayan Dibya fron Indonesian Arts Institute, Denpasar Bali
Mr. Dahlan Iskan, the Chief Executive Officer of PLN
Distinguished Presenters, all participants, and Colleagues

Assalamualaikum, Wr. Wb.

I am both honored and delighted to welcome you here in this remarkable conference hosted by Institut Teknologi Sepuluh Nopember (ITS) Surabaya in corporation with the Research Institute and Public Services (LPPM) ITS. The conference today takes the topic of “Empowering Creativity through Science and Technology to Enhance Nations Competitiveness”.

On behalf of the committee, I would like to thank Prof. Priyo Suprobo, the Rector of ITS, whose full support has enabled all of this possible; Prof. I Nyoman Sutantra, M.Sc, PhD., the head of LPPM who has kept encouraging us in accomplishing all good preparation to welcome you here today until tomorrow; and the support of the board of committee of the golden year anniversary, whose financially support this event. Also, all the sponsors who keep rendering and make today’s conference be more easily carried out.

Ladies and Gentlemen,

The interest of the international scientific community is clear, sharing enormous inspiring notions, research findings and innovations. This Conference has attracted 150 domestic and overseas presenters, it means that within two days we will hear 150 oral presentations. The subjects range from descriptions of recent technology, science both natural and social, and arts. So, it is marvelous, isn’t it? Only in two days 150 brilliant ideas would have been disseminated and enriched our inventory of knowledge; furthermore, these 150 fresh and prolific ideas will enable this beloved country ready to face the challenge of ACFTA.

Ladies and Gentlemen,

In the middle of us, here we have four notable speakers who would overcome our desire for inputing the latest knowledge delivered in their presentations in the plenary sessions. Therefore, I would like to express my sincere gratitude and warm welcome to Prof. KISHIDA Satoru who comes far away from Tuttori University, Japan; I also feel grateful for the coming of important figures: our Minister, Dr. Ir. H Fadel Muhammad Al-Haddar; Prof. Wayan Dibya from Denpasar-Bali, and Mr. Dahlan Iskan who has been so popular among us, people of Surabaya.
Ladies and gentlemen,

Today’s conference is born due to a hard work of all committee and staffs who have spent their time working day by day arranging every detail of the event, so allow me to congratulate their very keen and perfect job that makes me standing up here welcoming all the distinguished guests.

Last but not least, I would like to ask you all an apology for all inconvenience that you might find prior, during, or after the conference; we are all just an ordinary man that won’t be able to avoid making mistakes. Thank you and have extraordinarily inspiring seminar.

Wassalamu’alaikum Wr.Wb,

General Chairman of 2nd APTECS 2010
Dr. Bambang Sampurno
ACKNOWLEDGEMENTS

Special gratitude is extended to all of the followings:

RECTOR OF INSTITUT TEKNOLOGI SEPULUH NOPEMBER
INSTITUTE OF RESEARCH AND PUBLIC SERVICES – ITS
THE JOURNAL OF IPTEK ITS
MINISTRY OF MARINE AFFAIR AND FISHERIES
TOTTORI UNIVERSITY, JAPAN
PERUSAHAN LISTRIK NEGARA (PLN)
PT. TELEKOMUNIKASI INDONESIA, TBK
PT. TRUBA JAYA ENGINEERING
PT. NAHARADIA PRAKASA
HOUSE OF BEAUTY CLINIQUE
ELEKTRO BUDOYO – ITS
SMKN IX SURABAYA

for never ending supports that have made the 2nd APTECS 2010 held successfully
SCHEDULE
INTERNATIONAL SEMINAR ON APPLIED TECHNOLOGY, SCIENCE, AND ARTS
2nd APTECS 2010

Monday, 20 December 2010

<table>
<thead>
<tr>
<th>Time</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.00 - 22.00</td>
<td>Welcome dinner for overseas participants, officially attended by the mayor, Ir. Tri Rismaharini, MT</td>
</tr>
</tbody>
</table>

Day I: Tuesday 21 December 2010

<table>
<thead>
<tr>
<th>Time</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.45 - 07.30</td>
<td>Registration</td>
</tr>
<tr>
<td>07.30 - 07.40</td>
<td>Indonesian Traditional Musical Instruments- Elektro Budoyo : Ayak Talu</td>
</tr>
<tr>
<td>07.40 - 07.50</td>
<td>Traditional Dancing : Jejer Gandrung Banyuwangi - SMKN 9 Surabaya</td>
</tr>
<tr>
<td>07.50 - 08.00</td>
<td>Welcome to 2nd APTECS : Dr. Bambang Sampurno</td>
</tr>
<tr>
<td>08.00 - 08.05</td>
<td>Ladrang APTECS : Elektro Budoyo</td>
</tr>
<tr>
<td>08.05 - 08.15</td>
<td>Colossal Dancing Remo : Elektro Budoyo</td>
</tr>
<tr>
<td>08.15 - 08.25</td>
<td>Speech from The Chief of Research and Public Services - ITS :</td>
</tr>
<tr>
<td></td>
<td>Prof. I.N Sutantra</td>
</tr>
<tr>
<td>08.25 - 08.30</td>
<td>Opening Term - Rector ITS :</td>
</tr>
<tr>
<td></td>
<td>Prof. Priyo Suprobo</td>
</tr>
<tr>
<td>08.30 - 11.30</td>
<td>Theme I : The prospect of High - Superconducting Oxides and Their Surface Analysis Superconductivity, Surface Analysis, and Oxide and The Creative for The Future: by Prof. KISHIDA Satoru – Tottori University, Japan</td>
</tr>
<tr>
<td>11.30 - 12.30</td>
<td>Theme II : Central Roles of The Electricity to Enhance the Quality of Nation Competitiveness: by Mr. Dahlan Iskan – PLN</td>
</tr>
<tr>
<td></td>
<td>Moderator:</td>
</tr>
<tr>
<td></td>
<td>Prof. Imam Robandi</td>
</tr>
<tr>
<td>12.30 - 12.47</td>
<td>Break for Lunch and Pray</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.30 - 12.47</td>
<td>Eng-21</td>
<td>Art-1</td>
<td>Eng-65</td>
<td>Eng-87</td>
<td>Sci-1</td>
<td>Eng-51</td>
<td>Eng-105</td>
</tr>
<tr>
<td>14.48 - 15.05</td>
<td>Eng-29</td>
<td>Gen-3</td>
<td>Eng-73</td>
<td>Eng-95</td>
<td>Eng-120</td>
<td>Eng-59</td>
<td>Eng-113</td>
</tr>
<tr>
<td>15.05 - 15.30</td>
<td>Eng-30</td>
<td>Gen-6</td>
<td>Eng-74</td>
<td>Eng-96</td>
<td>Gen-9</td>
<td>Eng-60</td>
<td>Eng-114</td>
</tr>
<tr>
<td>15.30 - 15.47</td>
<td>Eng-31</td>
<td>Gen-7</td>
<td>Eng-75</td>
<td>Eng-97</td>
<td>Gen-4</td>
<td>Eng-61</td>
<td>Eng-115</td>
</tr>
<tr>
<td>15.47 - 16.04</td>
<td>Eng-32</td>
<td>Gen-8</td>
<td>Eng-76</td>
<td>Eng-98</td>
<td>Gen-5</td>
<td>Eng-62</td>
<td>Eng-116</td>
</tr>
</tbody>
</table>
Day II: Wednesday, 22 December 2010

<table>
<thead>
<tr>
<th>Time</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.45 - 08.00</td>
<td>Registration</td>
</tr>
<tr>
<td>08.00 - 08.10</td>
<td>Indonesian Traditional Musical Instrument - Elektro Budoyo:</td>
</tr>
<tr>
<td></td>
<td>Ojo dipleroki & Kelinciku Ucul</td>
</tr>
<tr>
<td>08.10 - 08.20</td>
<td>Traditional Dancing Pendet - TPKH ITS</td>
</tr>
<tr>
<td>08.20 - 08.30</td>
<td>Indonesian Traditional Musical Instrument - Elektro Budoyo: Ketawang</td>
</tr>
<tr>
<td>08.30 - 10.30</td>
<td>Keynote Speaker III and IV Panel:</td>
</tr>
<tr>
<td></td>
<td>Theme III: Resilience of National Arts and Culture to Enhance Nation</td>
</tr>
<tr>
<td></td>
<td>Competitiveness: By Prof. Wayan Dibia – Indonesian Arts Institute, Bali</td>
</tr>
<tr>
<td></td>
<td>Theme IV: Empowering Marine Resources to Enhance Nation Competitiveness:</td>
</tr>
<tr>
<td></td>
<td>Dr. Ir. H Fadel Muhammad Al-Haddar – Ministry of Marine Affairs and Fisheries</td>
</tr>
<tr>
<td></td>
<td>Moderator: Prof. I Ketut Aria Pria Utama</td>
</tr>
<tr>
<td>10.30 - 10.47</td>
<td>A Eng-1 B Eng-9 C Eng-17 D Eng-46 E Eng-39 F Eng-78 G Eng-33</td>
</tr>
<tr>
<td>10.47 - 11.04</td>
<td>A Eng-2 B Eng-10 C Eng-18 D Eng-47 E Eng-40 F Eng-79 G Eng-34</td>
</tr>
<tr>
<td>11.04 - 11.21</td>
<td>A Eng-3 B Eng-11 C Eng-19 D Eng-48 E Eng-41 F Eng-80 G Eng-50</td>
</tr>
<tr>
<td>11.21 - 11.38</td>
<td>A Eng-4 B Eng-12 C Eng-20 D Eng-49 E Eng-63 F Eng-81 G Eng-100</td>
</tr>
<tr>
<td>11.55 - 12.12</td>
<td>A Eng-6 B Eng-14 C Eng-43 D Eng-36 E Eng-85 F Eng-83 G Eng-102</td>
</tr>
<tr>
<td>12.12 - 12.39</td>
<td>A Eng-7 B Eng-15 C Eng-44 D Eng-37 E Eng-86 F Eng-84 G Eng-103</td>
</tr>
<tr>
<td>12.39-12.58</td>
<td>A Eng-8 B Eng-16 C Eng-45 D Eng-38 E Eng-77 F Eng-99 G Eng-104</td>
</tr>
<tr>
<td>12.58 - 13.45</td>
<td>Break for Lunch and pray</td>
</tr>
<tr>
<td>13.45-14.00</td>
<td>Closing Ceremony and Awarding Certificate</td>
</tr>
<tr>
<td>14.00 - 14.30</td>
<td>Preparation for City Tour (Cancelled)</td>
</tr>
<tr>
<td>14.30 - 17.30</td>
<td>City Tour (Cancelled)</td>
</tr>
<tr>
<td>17.00 - ...</td>
<td>See you on 3rd APTECS</td>
</tr>
</tbody>
</table>

NOTE:
A : Room Argopuro 1 B : Room Argopuro 2 C : Room Kawi D : Room Lawu
E : Room Semeru 1 F : Room Semeru 2 G : Room Utama
<table>
<thead>
<tr>
<th>Moderator Day I</th>
<th>Moderator Day II</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Room : Argopuro 1</td>
<td>A Room : Argopuro 1</td>
</tr>
<tr>
<td>A: Prof. Ir. Noor Endah Mochtar, M.Sc., Ph.D.</td>
<td>A: Dr. rer.nat Fredy Kurniawan, MSi</td>
</tr>
<tr>
<td>B Room : Argopuro II</td>
<td>B Room : Argopuro II</td>
</tr>
<tr>
<td>C Room : Kawi</td>
<td>C Room : Kawi</td>
</tr>
<tr>
<td>C: Prof. Dr. Ir. Mauridhi Hery Purnomo, M.Eng.</td>
<td>C: Prof. Ir. Sutardi, M.Eng., Ph.D.</td>
</tr>
<tr>
<td>D Room : Lawu</td>
<td>D Room : Lawu</td>
</tr>
<tr>
<td>D: Prof. Ir. Gamantyo Hendrantono, M.Eng., Ph.D.</td>
<td>D: Prof. Ir. Djuhar Manfaat, M.Sc., Ph.D.</td>
</tr>
<tr>
<td>E Room : Semeru 1</td>
<td>E Room : Semeru 1</td>
</tr>
<tr>
<td>E: Prof. Dr. R. Y. Perry Burhan, M.Sc.</td>
<td>E: Prof. Dr. Ir. Adi Soeprijanto, M.T.</td>
</tr>
<tr>
<td>F Room : Semeru 2</td>
<td>F Room : Semeru 2</td>
</tr>
<tr>
<td>F: Prof. Dr. Ir. Suprapto, M.Sc.</td>
<td>F: Prof. Dr. Ir. Dra. Danawati Hari Prajito, SE,M.Pd.</td>
</tr>
<tr>
<td>G Room : Utama</td>
<td>G Room : Utama</td>
</tr>
<tr>
<td>G: Dr. Maria Anityasari,ST.,ME.</td>
<td>G: Dr. Ir. Ria Asih Soemitro, M.Eng., DEA.</td>
</tr>
</tbody>
</table>

Rules of Paper Presentation

1. The allotted time for presentation and question-answer session is 15 minutes for each presenter.

2. To keep prompt presentation, bell would ring three times to remind the presenter’s available time for presentation. It rings every eight minutes of the allotted time, ten minutes, and the last 15 minutes.

3. It is mandatory that the presenter promptly uses the time allotted.

4. The timekeeper would also strictly watch the time allotted to each presenter.
List of Abstracts:

Effect of Ethanol-Indonesian Regular Unleaded Gasoline Blends and Ignition Timing on Engine Performance of Fuel Injected SI Engine
ATOK SETIYAWAN, BAMBOG SUGIARTO, AND YULIANTO S. NUGROHO
Eng -1 1

A Stair Climbing Wheelchair Based on Customer Needs
I MADE LONDEN BATAN, SUNARDI TJANDRA, ALFIAN HUDAN NUZULA, AND GHOFFAR F.S.
Eng-2 1

Simulation of Close Loop Distributorless Digital Ignition Multipurpose with Matlab Software
SYAMSUL HADI, BAMBOG SAMPURNO, AND LIZA RUSDIYANA
Eng-3 2

Fuzzy Control System of CVT with Two Actuator Fork Screw to Increase Vehicle Acceleration
BAMBOG SAMPURNO AND WIDJOEKOKO HANANTO
Eng-4 2

A Study on the Use of Kinetic Energy Recovery System Technology for Motorcycle to Enhance Acceleration
DIAH WULANDARI, BAMBOG SAMPURNO, AND I NYOMAN SUTANTRA
Eng-5 3

A Comparative Study on Shielded Metal Arc Welding in Sea Water, Fresh Water and Air
ATRIA PRADITYANA
Eng-6 3

Phase Transformation of CuZn Alloys Produced by Mechanical Alloving with Milling Time and Zn Volume Fraction Variation
WIDYASTUTI, RAHMATULLAH ISRA’, AND NURUL TAUFIQURRAHMAN
Eng-7 4

Initiation and Propagation of Crack in Nylon-6 Disk Under Impact
SUTIKNO
Eng-8 4

Models of Queuing Simulation for Slag Transportation
MUHAMMAD RUSMAN AND SUTIKNO
Eng-9 5

Output Power Measurement of the Developed Knee Flexion Angular Driven by Human Energy Harvester
HARUS LG AND UMARUDIN
Eng-10 5

Electromagnetic Vibration Energy Harvester for Harvesting Vibration Energy of the KRI KKP-811’s Engine
HARUS LG AND RAHMAT SUSANTO
Eng-11 6

The Effect of Welding Parameters on the Configuration of Arc and Its Prediction by Artificial Neural Network
ABDULLAH SHAHAB, I. B. RU ADHI ATMA WIGUNA, AND MUHAMMAD FADLY ABBAS
Eng-12 6

Designing a Portable Semi Automatic Dryer Machine for Rattan Art Home Industry
AGUNG PRIJO BUDIJONO
Eng-13 7
Planning and Developing Hot Press Machine Using Pneumatic System Relay Based Control
SAMPURNO

On the Vibration Profile of a V-Belt Transmission System in the Presence of a Lump
BAMBANG DARYANTO W. , AND HERY ARTADY

The Influence of the Coil Length and the Number of Wire Turns on the Voltage Generated by a Vibration Energy Harvesting Mechanism
WIWIEK HENDROWATI, BAMBANG DARYANTO W., AND HARUS L. GUNTUR

Empowering a Collective Techno-Force: Transforming an Engineer’s Force into a Collective Techno-Team Work (An Interplay of Constructionism Perspective and Social Dimension of Organization)
ADI SURYANI

Analysis on Modeling of DC Motor and Its Driving System Using with Matlab for Wheeled Mobile Robot
MIRZA GHULAM INDRALAKSANA, AND HENDRO NURHADI

Concept of Rejuvenation Pure Asbuton Bitumen in Accordance with the Specifications of Petroleum Asphalt used is a Pavement Material
FILIA RAKHMAH AND INDRASURYA B. MOCHTAR

Hydrometeorological Data Collection and Processing
NOORDIAH HELDA

Experimental Study on Internal RH of BFS Mortars at Early Age
JANUARTI JAYA EKAPUTRI

The Implementation of Probabilistic Scheduling (Case Study : Development Project of FSAINTEK UNAIR Building)
FARIDA RAHMAWATI

Dry Joint Connection on Precast Column
FATHMAH MAHMUD

Modal Parameter Extraction of a Seismically-Excited Multi-Story Building from Its Measured Response
AGUNG BUDIPRIYANTO

Vulnerability Index Estimation for Building and Ground Using Microtremor
TRIWULAN, WIDIA UTAMA, DWI DESA WARNANA, AND SUNGKONO
Prediction of Strength of 28-day-age-concrete with Fly Ash Based on Early Age Concrete Data Using Maturity Method
IFTA MINKA, PUJO AJI, AND TRIWULAN

Eng-26 13

Prediction of Strength of 28 day-age-concrete Based on Early Age Concrete Data Using Maturity Method
TEGAR JUANG PAMBUDI, TRIWULAN, AND PUJO AJI

Eng-27 14

Finite Element Modeling of Concrete-Steel Bond of Reinforced Concrete Structure
DATA IRANATA

Eng-28 14

Compressive Strength and Microstructure Properties of Polymeric Concrete Incorporating Pulverized Fuel Ash (PFA) and Microwave Incinerated Rice Husk Ash (MIRHA)
M.F. NURUDDIN AND M.S. DARMAWAN

Eng-29 15

Application of Probabilistic Scheduling Method on UNAIR FSAINTEK Building Project
FARIDA RAHMAWATI AND WINDIARTO ABISETYO

Eng-30 15

Fabrication of Simple House Walls by Using Recycled Plastic Materials
MUNARUS SULUCH AND HARUN ALRASYID

Eng-31 16

Load Distribution and Deflection Prediction of Pile Groups for Lateral Load
DEWI AMALIA, SUWIGNYO, AND ANANTA SIGIT SIDHARTA

Eng-32 16

PDT Model for NSVM
CHRISTIONO UTOMO

Eng-33 17

Micro Earthquake Monitoring to Detect the Distribution of Fluid Injection in Kamojang Geothermal Field
ANIK HILYAH

Eng-34 17

Shear Strength Predictions of Steel Reinforced Concrete Beam-Column Joints Using Superposition and Strut-and-Tie Methods
BUDI SUSWANTO AND HIDAYAT SOEGIHARDJO

Eng-35 18

The Impacts of Gypsum Board to the Post-fire Steel Profile
HIDAYAT SOEGIHARDJO AND TEGUH ESA WIBAWA

Eng-36 18

Experimental Investigation of Hydraulic Jump on Conventional and Stepped Spillway
EDIJATNO, NADJADJI ANWAR, AND VERY DERMAWAN

Eng-37 19
Creativeness of Sustainable Development Aspects on Spatial Arrangement Strategies and the Reformation of Public Transportation Systems within the Agglomeration Areas of Mebidangro to Anticipate the Operational of Medan Baru Internasional Airport at Kualanamu
FILIYANTI TETA ATETA BANGUN

Optimization Process of Extraction of Paclitaxel and 10-Deacetylbaccatin III from Taxus Wallichiana Zucc Using Supercritical CO₂
NGUYEN QUANG DUY, PHAN DINH TUAN, AND LE Thi KIM PHUNG

Nonlinear pH Control (Adaptive Self-Tuning PID) Based on Reaction Invariant
HENDRA CORDOVA AND ALI MASDUKI

A Study on the Effects of Rice Husk Ash on Strontium Waste Cementation
SUSETYO HARIO PUTERO AND KUSNANTO

Neural Networks Based Predictive PID Controller for Nonlinear System
BAMBANG L. WIDIJANTORO, HENI DWI PUTRI, AND BAMBANG PRIHANDOKO

Temperature Sensor Model Based on Thermo-Optics Effect in Fractal Fiber Bragg Grating
M. RAMDLAN KIROM

M and C Sea Transportation as Solution for Increasing Safety at Sea
AULIA S. AISJAH, AA MASROERI, EKO BUDI J., WASIS D. ARYAWAN, AND FITRI ADI I

A Design of Multivariable Optimal Control Linear Quadratic Gaussian (LQG) in FPB 38 Ship for Improving Turning Capability
AULIA SITI AISJAH, A. A. MASROERI, AND DINAYATI RODLIYAH

Cold Chain System (Future Research Perspective)
GRASIANO WARAKANO LAILOSSA, KETUT BUDA ARTANA, AND A.A.B.DINARIYANA

The Concept of Wireless Optical Communication System to Transmit the Fringe Pattern of a Sagnac Interferometer
SAYUTI SYAMSUAR

Designing Automatic Backwash in Sand Filter Tank at Ipa 1 PDAM Gresik
TOTOK SOEHWARTANTO, RONNY DWI NORIYATI, AND NUR RAHMAH AWALIYAH

Biokinetic Study on α-Amylase Hydrolysis of Sorghum Starch to Readily Fermentable Sugar for Bioethanol
SOEPRIJANTO, TRI WIDJAJA, ARINO ANZIP, AND SUHARMADI
Prediction of CO₂ Gas Solubility in Aqueous Solution of Potassium Carbonate and MDEA Using Electrolyte UNIQUAC
SAIDAH ALTWAY, KUSENDRAW MARHETHA, KUSWANDI, AND WINARSIH

Eng-50 25

Alkaline Pretreatment on Hydrolysis of Grain Sorghum Bioconversion to Ethanol by Simultaneous Saccharification and Fermentation
YUNI PARAMITHA SARI, DINI ANGGRIANI, AND NONOT SOEWARNO

Eng-51 26

Producing Sulfur Coated Urea by Fluid Bed Wet Coating Method: Drying Kinetics and Product Quality
SUHERMAN, WIDAYAT, AND M. DJAENI

Eng-52 26

Process Improvement of Coco-Biodiesel Production through Three Stages Esterification Processes
HADIYANTO, ANDRI CAHYO KUMORO, BAMBANG HELIYANTO, AND WIDAYAT

Eng-53 27

Fabrication of Microstructure Gold Electrode
HIKMAT, FREDY KURNIAWAN, AND SUPRAPTO

Eng-54 27

Solvent Selection for Microwave Assisted Extraction of Dioscorin from Dioscorea Hispida Dennst Flour
INDAH HARTATI AND ANDRI CAHYO KUMORO

Eng-55 28

Regulation of PDF 1.2 Expression by Defence and Abiotic Stress Signalling Pathways
BADRUZSAUFARI, PAUL R. EBERT, AND DON MACLEAN

Eng-56 28

Case Study of Heat Transfer and Cracker Diffusivity Coefficient Characteristics to Design Exhaust Gas Heat Dryer
AGUNG PRIJO BUDIJONO, ALI KHOMSAH, AND AGUS BUDIANTO

Eng-57 29

Modification of HZSM-5 Base Catalysts for Producing Biofuels from Palm Oil
AGUS BUDIANTO, KUSNO BUDHIKARJONO, ACHMAD ROESYADI, NURIANNAH, AND DANAWATI HARI PARJITNO

Eng-58 29

Carbon Dioxide Absorption into Promoted Aqueous Potassium Carbonate
L. PUDJIASTUTI, E.A.S APUTRA, A.ALTWAY, SUSIANTO, KUSWANDI, AND NONOT SUWARNO

Eng-59 30

Effects of Time and Solvent/Feed Ratio on the Extraction of Mannan from Aloe Vera Leaf Pulp
ANDRI CAHYO KUMORO AND DIAH SUSETYO RETNOWATI

Eng-60 30

Anti-Sway Control for Haptic Crane for Application of Material Handling by Using Active Force Control (AFC)
DIDIK SETYO P., ENDAH S. NINGRUM, ALI HUSEIN ALASIRY, AND MOH. NASYIR T.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal Performance Design of Wind-Diesel Hybrid Power System (WDHPS) with Superconducting Magnetic Energy Storage (SMES) by Using Imperialist Competitive Algorithm (ICA)</td>
<td>Eng-62</td>
</tr>
<tr>
<td>Optimal Design of PID Power System Stabilizer (PSS) Using Ant Colony Optimization (ACO)</td>
<td>Eng-63</td>
</tr>
<tr>
<td>Optimization of Capacitive Energy Storage (CES) for Improved Transient Stability on Single Machine Infinite Bus (SMIB) Using Differential Evolution Algorithm</td>
<td>Eng-64</td>
</tr>
<tr>
<td>Application of Modified Backpropagation Neural Networks-based Economic Dispatch</td>
<td>Eng-65</td>
</tr>
<tr>
<td>Generation Scheduling for Optimal Economic Dispatch Using Clonal Selection Algorithm (CSA)</td>
<td>Eng-66</td>
</tr>
<tr>
<td>Design of Power System Stabilizer (PSS)-based on Adaptive Neural Networks and PI Controller Using Particle Swarm Optimization (PSO)</td>
<td>Eng-67</td>
</tr>
<tr>
<td>Application of Imperialist Competitive Algorithm for Optimal Capacitive Energy Storage in Electric Power System</td>
<td>Eng-68</td>
</tr>
<tr>
<td>An Analog Prototype Model of STATCOM in Analysis and Design</td>
<td>Eng-69</td>
</tr>
<tr>
<td>Application of Differential Evolution for Load Frequency Control Optimization on Two Area Power System</td>
<td>Eng-70</td>
</tr>
<tr>
<td>Optimal Performance of Wind-Diesel Hybrid Power System (WDHPS) on Isolated Area with Superconducting Magnetic Energy Storage (SMES) Using Particles Swarm Optimization (PSO)</td>
<td>Eng-71</td>
</tr>
<tr>
<td>Optimal Coordination of Superconducting Magnetic Energy Storage (SMES) and Power System Stabilizer (PSS) on Power System Using Differential Evolution Algorithm</td>
<td>Eng-72</td>
</tr>
<tr>
<td>Optimal Design of PID Power System Stabilizers (PSS) Using Imperialist Competitive Algorithm (ICA)</td>
<td>Eng-73</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Optimization Solutions of Economic Dispatch in Power System</td>
<td></td>
</tr>
<tr>
<td>Using Bacterial Foraging Algorithm</td>
<td></td>
</tr>
<tr>
<td>MUHAMMAD RIDHA FAUZI, ALI MUSYIFA, and IMAM ROBANDI</td>
<td></td>
</tr>
<tr>
<td>Tuning of Automatic Voltage Regulator (AVR) System and</td>
<td></td>
</tr>
<tr>
<td>Power System Stabilizer (PSS) Using Imperialist Competitive</td>
<td></td>
</tr>
<tr>
<td>Algorithm (ICA)</td>
<td></td>
</tr>
<tr>
<td>MUHAMMAD TAUFIQ RAMADHAN, MUHAMAD OTONG, TAMAJI, and IMAM ROBANDI</td>
<td></td>
</tr>
<tr>
<td>Design of Power System Stabilizer (PSS) Using Imperialist</td>
<td></td>
</tr>
<tr>
<td>Competitive Algorithm (ICA) in Multimachine Power System</td>
<td></td>
</tr>
<tr>
<td>AS’ADI, ADI PRAMUKA, ERFAN SAHIRI, and IMAM ROBANDI</td>
<td></td>
</tr>
<tr>
<td>State Feedback Controller Design of Power System Stabilizer (PSS)</td>
<td></td>
</tr>
<tr>
<td>by Using Fuzzy Model</td>
<td></td>
</tr>
<tr>
<td>TAMAJI and IMAM ROBANDI</td>
<td></td>
</tr>
<tr>
<td>Design of Optimal Dual Input Power System Stabilizers (DIPSS) and</td>
<td></td>
</tr>
<tr>
<td>Capacitive Energy Storage (CES) Using Particle Swarm Optimization</td>
<td></td>
</tr>
<tr>
<td>(PSO)</td>
<td></td>
</tr>
<tr>
<td>FAIQ ULFI, TAMAJI, and IMAM ROBANDI</td>
<td></td>
</tr>
<tr>
<td>Optimal Tuning of PID Controller for Load Frequency Control (LFC)</td>
<td></td>
</tr>
<tr>
<td>Using Ant Colony Optimization (ACO)</td>
<td></td>
</tr>
<tr>
<td>M. FAISHAL A, MIKTAKHUR ROZIQ M.D, MUHAMMAD RIDHA FAUZI, TAMAJI, and</td>
<td></td>
</tr>
<tr>
<td>IMAM ROBANDI</td>
<td></td>
</tr>
<tr>
<td>Tuning of Power System Stabilizer (PSS) on Single Machine Infinite</td>
<td></td>
</tr>
<tr>
<td>Bus (SMIB) Using Particle Swarm Optimization (PSO)</td>
<td></td>
</tr>
<tr>
<td>ZAINAL ABIDIN, MUHAMMAD OTONG, TAMAJI, and IMAM ROBANDI</td>
<td></td>
</tr>
<tr>
<td>Model and Simulation of Vehicle Lateral Stability Control</td>
<td></td>
</tr>
<tr>
<td>FACHRUDIN, IMAM ROBANDI, and I NYOMAN SUTANTRA</td>
<td></td>
</tr>
<tr>
<td>Application of Modified Neural Network- based Economic Dispatch in</td>
<td></td>
</tr>
<tr>
<td>Java-Bali Interconnection System</td>
<td></td>
</tr>
<tr>
<td>AMIR AMRUDDIN, M. YUSUF WIBISONO, AS’ADI, and IMAM ROBANDI</td>
<td></td>
</tr>
<tr>
<td>Power Quality Improvement in AC/DC Three Phase Semiconverter with</td>
<td></td>
</tr>
<tr>
<td>Third Harmonic Injection Using PI Controller</td>
<td></td>
</tr>
<tr>
<td>PRIMA DEWI PERMATASARI, YAHYA CHUSNA ARIF, AS’ADI, and IMAM ROBANDI</td>
<td></td>
</tr>
<tr>
<td>Design of Imperialist Competitive Algorithm for Optimal</td>
<td></td>
</tr>
<tr>
<td>Coordination Superconducting Magnetic Energy Storage (SMES) and</td>
<td></td>
</tr>
<tr>
<td>Power System Stabilizer (PSS)</td>
<td></td>
</tr>
<tr>
<td>MOCHAMAD AVID FASSAMSI, AS’ADI, FACHRUDIN, and IMAM ROBANDI</td>
<td></td>
</tr>
<tr>
<td>Effects of Fuel Reprocessing Flow Rate on Passive Compact Molten</td>
<td></td>
</tr>
<tr>
<td>Salt Reactor (PCMSR) Fuel Composition at Sustainable Phase</td>
<td></td>
</tr>
<tr>
<td>ANDANG WIDI HARTO</td>
<td></td>
</tr>
</tbody>
</table>
Design of Automatic License Plate Identification System for e-Commerce Solutions to Parking Space Optimization
W. TRI HARTONO AND ARMEIN Z. R. LANGI

Power Supply Planning Study on Electric Train Island North Java Tracking
R. AHMAD CHOLILURRAHMAN AND ANTON ANDRI HARTANTO

A Fuzzy Logic Controller for Stability Voltage and Maximum Energy Extraction for Fixed Speed Wind Power Generation Systems
RONY H. R. FOR A, KETUT BUDA ARTANA, AND MASROERI

Analysis of Medical Images Segmented Using Optimized Fuzzy Logic Methods
INDAH SOESANTI, ADHI SUSANTO, THOMAS SRI WIDODO, AND MAESADJI TJOKRONEGORO

Noisy MRI Medical Images Segmentation Using a FCM Algorithm that Incorporates Spatial Information into the Membership Function
INDAH SOESANTI, ADHI SUSANTO, THOMAS SRI WIDODO, AND MAESADJI TJOKRONEGORO

Fault Distance Estimation of Two-Terminal Transmission Lines
RAMADONI SYAHPUTRA

Designing Control Device for Closing and Opening the Door Using TV Remote
MARVIN CHANDRA WIJAYA AND SEMUIL TJIHARJADI

Design of Generator DC Barrium Ferite Permanent Type Axial Magnetic Flux (AFM) for Wind Power Electricity Application Utilizes Finite Element Methode Magnetics(FEMM) Software
DYAH SAWITRI AND RUDYANA KRISTYANTO

Utilization of Water Disposal Results Condensation of Condenser Geothermal Power Plant as a Micro-Hydro Powerplant
R. AHMAD CHOLILURRAHMAN

Dielectric Dissipation Factor Comparison Between Mineral Oil and Synthetic Ester Oil During Aging Process
ENDAH YULIASTUTI

Designing Traction Control System of Front Wheel Drive Vehicle with Mpc Controller
MOH SYARIFFUDIEN ZUHRIE

Designing Video Conference Application for Distance Learning
MINGSEP, LUKITO E. NUGROHO, JAZY E. ISTIYANTO, AND RISANURI HIDAYAT

Segregation Mechanism Observations on Al2O3 Particles in Al/Al2O3 MMCs
MOCHAMAD Z, WIDYASTUTI, AND MOCHTAR K.
The Concept of Wireless Optical Communication System to Transmit the Fringe Pattern of a Sagnac Interferometer

JOHN MCLACHLAN-KARR

Eng-99 50

Maintenance Scheduling for Main Engine Support Systems Using System Dynamics Modeling

RUBBY PRASETYA, I PUTU ANDHINDA KUSUMA, AAB. DINARIYANA D.P., LAHAR BALIWANGI, AND KETUT BUDA ARTANA

Eng-100 50

Maturity Measurement Model for ERP Higher Education Implementation to Improve Costumer Orientation and Service through Education and Training Human Resource Related It Using Cobit 4.1 and Weighted Fishbone Diagram

RAHIMI FITRI AND RIYANARTO SARNI

Eng-101 51

Maritim Weather Forecast Using Fuzzy Logic for Shipping Feasibility at Tanjung Perak Port Surabaya

SYAMSUL ARIFIN, AULIA SITI AISJAH, BAMBANG LELONO W., AND PRITA MEILANITASARI

Eng-102 51

Implementation of RFID Technology in Inventory Control

RINDRA YUSIANTO AND WISNU ADI PRASETYANTO

Eng-103 52

Customer Protection in Reuse Strategy – An Analysis from Warranty Perspective

MARIA ANITYASARI

Eng-104 52

Ergonomic Design on Mobile and Portable Fish Smoking Tool to Improve Fish Processing for Improving SME Competitiveness

EKO NURMIANTO, NUGROHO PRIYO NEGORO, AND RETNANI RAHMIATI

Eng-105 53

Risk Based Design for LNG Receiving Terminal in Benoa Bay-Bali

RENDY MAULANA B, KETUT BUDA ARTANA, AND A.A.B. DINARIYANA

Eng-106 53

Mathematical Modeling of Batch Distillation with a Middle Vessel Under Total Reflux Policy

A. HISYAM, R. MOHD YUNUS, B. ABDUL AZIZ, AND CHIN SIM YEE

Eng-107 54

Mapping of Potential Renewable Energy Sources as an Alternatives Energy Ready to be Exploited in Province of East Nusa Tenggara

AGUSTHINUS S. SAMPEALLO

Eng-108 54

Propagating Gravity Current in a Uniform Channel as a Laboratory Model for Salt Intrusion

TIJPTO PRASTOWO

Eng-109 55

Effects of Mechanical Milling on Hydriding-dehydriding Properties of Mg-23.5Ni Eutectic Alloy

SUTARISI AND S.L-LEE

Eng-110 55
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Stress on Thermal Spray Material at High Temperature Resistant Ceramic Metal Super Alloy</td>
<td>56</td>
</tr>
<tr>
<td>H. Purwaniningsih, R. Fajarin, H. Tanadi, and Sulistijono</td>
<td></td>
</tr>
<tr>
<td>Experimental Study of Alternative Materials Composite for Helmet</td>
<td>56</td>
</tr>
<tr>
<td>Atria Pradityana</td>
<td></td>
</tr>
<tr>
<td>An Investigation into the Resistance Characteristics of Geometrically Similar Models and with Special Attention to Model with Bulbous Bow</td>
<td>57</td>
</tr>
<tr>
<td>I K A P Utama and A Jamaluddin</td>
<td></td>
</tr>
<tr>
<td>Design of Product Service System Online Self-Assessment for Higher Education Institution Students</td>
<td>57</td>
</tr>
<tr>
<td>R. W. Tri Hartono and Tata Supriyadi</td>
<td></td>
</tr>
<tr>
<td>Improving Business Competitiveness through Innovation: A Comparative Study among China, India and Indonesia</td>
<td>58</td>
</tr>
<tr>
<td>Sari Lestari Zainal Ridho and Marieska Lupikawaty</td>
<td></td>
</tr>
<tr>
<td>The Role of University in Improving the Quality of Human Resources</td>
<td>58</td>
</tr>
<tr>
<td>Rohani Jahia Widodo</td>
<td></td>
</tr>
<tr>
<td>Acceptance of Web Surfers to Internet Content Filters: A Gender Perspective</td>
<td>59</td>
</tr>
<tr>
<td>Baroroh Lestari</td>
<td></td>
</tr>
<tr>
<td>Design of Higher Education Learning Management System Interoperability</td>
<td>59</td>
</tr>
<tr>
<td>Yeni Anistyasari and Riyantarto Sarho</td>
<td></td>
</tr>
<tr>
<td>Effect of Information Technology Maturity Model Process by Using Domain Information Technology Acquisition and Implementation in Higher Education</td>
<td>60</td>
</tr>
<tr>
<td>Alexander Setiawan</td>
<td></td>
</tr>
<tr>
<td>"Personal Mobile Learning” Distance Learning Device Using DVB Technology</td>
<td>60</td>
</tr>
<tr>
<td>Kumara Sadana Putra, S.Ds,</td>
<td></td>
</tr>
<tr>
<td>E-Learning Distributed System Development for Rural Education</td>
<td>61</td>
</tr>
<tr>
<td>Semuill Tjiharjadi and Marvin Chandra Wijaya</td>
<td></td>
</tr>
<tr>
<td>Sand and Shell Crafts Bussiness Group Development in Paiton District, Probolinggo Regency</td>
<td>61</td>
</tr>
<tr>
<td>Eko Nurmianto, Nugroho Priyo Negoro, and Waluyohadi</td>
<td></td>
</tr>
<tr>
<td>Lighting Analysis for Design Interior Car Body of First Class Train New Generation PT. INKA</td>
<td>62</td>
</tr>
<tr>
<td>Bambang Trisitijono</td>
<td></td>
</tr>
</tbody>
</table>
Enhancement of New Batik Design for Teenagers Segment
RahmatSyam Lakoro, Baroto Tavip Indrojarwo, Sabar, and Sayatman
Art-2 62

Development of New Batik Design for Contemporary Segment
Baroto Tavip Indrojarwo, Sabar, RahmatSyam Lakoro, and Sayatman
Art-3 63

Consumer Preferences of New Batik Design for Children, Teenagers and Contemporary Segments by Perceptual Mapping
Sabar, Baroto Tavip Indrojarwo, RahmatSyam Lakoro, and Sayatman
Art-4 64

Exploration of New Batik Design for Children Segment
Sayatman, Baroto Tavip Indrojarwo, Sabar, and RahmatSyam Lakoro
Art-5 65

Eco-Tech in Architecture Case: Architecture by Jean Nouvel and YB Mangunwijaya
Murni Rachmawati
Art-6 65

Potency of Pemphis Acidula as a Handicraft Material Decreasig Its Population
Listiani, Tutik Nurhidayati, and Dian Saptarini
Sci-1 66

Antibacterial Effect of Casein and Casein Hydrolisate on Enterobacter Sakazakii
Fatma Zuhrotun Nisa, Dyah Intan Puspitasari, and Nurrokhman
Sci-2 66

Mathematics Mobile Learning Application (MMLA) for System of Linear Equation with Two Variables: An Alternative Instructional Media
Evangelista Lus Windyana Palupi and Sitti Maesuri Patahuddin
Sci-3 67

Advantages of Algae Spirogyra as the Raw Material of Bioethanol with the Addition of a-Amilase Enzyme
SulfaHri, Siti Mushlihah, Eko Sunarto, and Renia Setyo Utami
Sci-4 67

Bioclimatic Concept Approach in Sustainable Architecture Context for Improving Indoor Thermal Comfort on Warm Humid Tropic HoUsing Estate
Ima Defiana
Sci-5 68

Classification of Particles with Sub-Micron in Size by Using the Electrically Enhancement Hydro-Cyclone Separator
Romanus Krisantas Tue Nenu, Hideto Yoshida, Sugeng Winardi, and M. Rachmoellah
Eng-114 68

Artificial Intelligence Development Based Adaptive Neuro Fuzzy Inference System for Lung Cancer Diagnosis
Syamsul Arifin, Andi Rahmadiasah, and Sylvia Ayu Pradananawi
Eng-115 69

Robot Soccer System Based on Virtual Force Field Method Approach
Rizky Yuniar Hakkun, Endah Suryawati Ningrum, and Setiawardhana
Eng-116 69
Structural Behaviour of Submerged Floating Tunnels Under Environmental Loadings

Endah Wahyun, I Gusti Putu Raka, Budi Suswanto, Djoko Priyo Utomo, and Mulyo Harris Pradono

Slenderness Study of Square Reinforcement Concrete Columns with Software MS Visual Basic 6.0

Iman Wimbadi, Tavio, and Paulus Winoto

Implementation of Virtual Force Field Method for Movements Control Autonomous Mobile Robot in Soccer Robot Applications

Ali Husein Alasiry, Endah Suryawati Ningrm, and Bayu Prasetyo

An Image Processing System For Visual Servoing of Soccer Robot

Endah Suryawati Ningrm, Rizky Yuniar Hakkun, Ali Husein Alasiry, and Rodik Wahyu Indrawa

Eng-117 70
Eng-118 70
Eng-119 71
Eng-120 71
Design of Optimal Dual Input Power System Stabilizers (DIPSS) and Capacitive Energy Storage (CES) using Particle Swarm Optimization (PSO)

FAIQ ULFI1, TAMAJI2, AND IMAM ROBANDI2

1Department of Electrical Engineering,
Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
2Research Group on Power System Operation and Control (PSOC) Laboratory,
Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
email: faiq@elect-eng.its.ac.id

Abstract—This paper discusses about the instability in electric power system and its importance in overcoming instability rapidly. This problem is generally solved using a stabilizer such as Conventional Power System Stabilizer (PSS). However, the use of PSS is limited to the retrieval speed signals that do not have the relatively large noise. Large noise will affect in the generator excitation system. Reducing of signal noise in the speed signal, so Dual Input Power System Stabilizer (DIPSS) is used to overcome this problem. DIPSS can reduce signal noise by taking another input signal in system model. It can increase or decrease level in value for input of excitation system, so the excitation system can avoid of mistakes in decision-reference signal. Deviation in electrical power (ΔPe) and deviation in speed (Δω) in generator is used as an input signal DIPSS. Improvement stability in power system usually using more than one device. CES (Capacitive Energy Storage) is choosen become second device to handle this problem. CES usually used to overcome frequency oscilation. This equipment is added to reduce the little overshoot from DIPSS. Optimal coordination between two device is needed to obtain good results and does not exacerbate the addition of extra equipment. it needs the appropriate parameter value of each equipment in order to overcome problems quickly. Particle Swarm Optimization (PSO) is method in order to find value of time constant in block diagram parameter lead lag DIPSS and gain in CES. From the simulation result show that the use of CES DIPSS PSO can speed up settling time to 12.302 second better than uncontrolled, 9.612 second than PSS, and 0.563 second when using DIPSS PSO.

Keywords—Dual Input Power System Stabilizer (DIPSS), Particle Swarm Optimization (PSO), Power System Stabilizer (PSS), Capacitive Energy Storage (CES)

I. INTRODUCTION

Stability in power system is very important. To maintain stability, it necessary select of appropriate control strategies. Furthermore, this control is necessary for power system reliable and can overcome the problems quickly when exposed to disturbances. The bad response caused load changes can lead to a long oscillation frequency. Oscillation frequency will affect the terminal voltage and will indirectly affect the power transfer performance if not corrected quickly.

Another thing that also must be considered in the operation of power systems is the instability. Instability is one of the problems of direct impact in load power system changes. This disturbance can be transients or dynamic instability. In dynamic instability changes in load can result in oscillations in the system and can bring the system into an unstable region. To overcome this problem we can use PSS equipment. However, PSS equipment can not reduce the noise that appears when getting speed signal which is used as input signal [1]. This noise can effect into excitation system, so the excitation system will increase. This can cause oscillations in the electric power system, so PSS is only limited to systems with small noise.

In this paper proposed the use of equipment which is the development of PSS to overcome the problems of power system instability. This Equipment is DIPSS which type of PSS can reduce signal noise from getting velocity signal. Noise signal along with speed signal will be reduced so that the excitation system to avoid mistakes in decision-reference signal. Deviation in electrical power (ΔPe) and velocity deviation (Δω) in generator is used as an input signal DIPSS. Improvement stability in power system usually using more than one device. CES (Capacitive Energy Storage) is chosen as a second device to handle this problem. CES is usually used to overcome frequency oscillation. This equipment is added to reduce the little overshoot from DIPSS. Optimal coordination between two devices is needed to obtain good results and does not exacerbate the addition of extra equipment. It needs the appropriate parameter value of each device in order to overcome problems quickly. Particle Swarm Optimization (PSO) is a method in order to find the value of optimized parameters [2].

II. FUNDAMENTAL THEORY

A. Power System Stability
The stability of power systems is abilities to keep the value of the system in case of disruption output [3]. This stability is classified into steady state stability and transient stability. The stability of steady state electric power system is ability to achieve a stable condition at the same new condition with initial conditions without interference. The analysis used in steady state stability is using linear model approach. While the transient stability of power system ability to achieve a new stable state after a system big disturbance.

B. Single Machine Infinite Bus (SMIB)

Single Machine Infinite Bus (SMIB) is model of system which transfers electric power to unlimited bus. Unlimited bus in this paper meaning that distance of machine and load is very far, so the voltage in unlimited bus is assumed not change. Generator is represented by single machine which represented one of electric power plan. Value of frequency and phase is assumed not change in this system. For this paper, SMIB Modeling here refers to the model transfer function of Heffron and Phillips [4]. In this model there are two block diagrams that linearized namely mechanical loop at the top and electric loop at the bottom. Linearized SMIB based here since only a low frequency oscillation analysis in operating conditions. This model there is two enhancer function into the model system for testing the mechanical torque deviation (ΔT_m) and additional excitation (U_e) Signal (ΔV_t) represent of generator voltage which have disturbance. Complete block diagram of SMIB is shown in Fig. 1.

C. Conventional Power System Stabilizer (PSS)

Conventional Power System Stabilizer (PSS) is additional equipment which is used to produce components of damping by adjusting the excitation by way of electrical torque in accordance with the deviation in rotor speed. PSS design methods generally involve frequency response based on the concept of increasing the damping torque. The block diagram of PSS consists of washout, dynamic compensator, and filter torque diagram. Washout block diagram represent filter and is used to pass high frequency. Compensator block diagram is used to provide a phase lead and lag for the input signal. Input PSS is speed change and output is voltage signal, the voltage signal is used in the excitation system. Complete block diagram of PSS is shown in Fig. 2.

D. Dual Input Power System Stabilizer (DIPSS)

Dual input Power System Stabilizer (DIPSS) is one of the model PSS which is able to reduce the noise signal along with signals. Noise signal which is generally in conjunction with the speed signal and used as input PSS can be derived from the shaft motion component. This shaft motion component such as the lateral shaft run-out that causes excessive in modulation generator excitation system or oscillations torque resulting from changes in electrical torque[1]. The components of this noise will affect the excitation of the generator and cause an influence on the electrical torque variations. Complete block diagram of DIPSS is shown in Fig. 3. Input in this stabilizer is the deviation of rotor angular velocity and deviation electrical power. Each input has series of washout and transducer. Washout circuit serves to provide a continuous condition at output stabilizer while the transducer is used to change the input signal into voltage. Model of dual input power system stabilizer take from IEEE type PSS2B. Each input has two washout block diagram (Tw1-Tw2) and one transducer (T6-T7). Time constant of torque filter is signed T8 and T9.

E. Capacitive Energy Storage (CES)

Capacitive Energy Storage is device that can overcome frequency oscillation. The storage capacitor is connected to the AC grid. Equipment in CES device have inverter and rectifier with 12-pulse configuration, capacitance, and resistance connected in parallel that represent losses of capacitor bank. The workings of this equipment that is charged when the voltage is less than a full charge and discharge voltage when during peak load operation.
III. PARTICLE SWARM OPTIMIZATION (PSO)

Particle Swarm Optimization (PSO) is a method used in DIPSS and CES optimization system parameter. PSO method was introduced by Kennedy and Eberhard in 1995 [2]. This method is one of the intelligence methods. These algorithms use population base as a method of finding a solution where each particle represents a solution. Each particle of the PSO method is moving with speed changes based on its own flying experience and flying experience of other particles. Each particle has a memory and can remember the location of the best I've visited. The best position associated with the best fitness value is symbolized with p_{best} whereas the best value of the entire population is symbolized by g_{best}. In PSO each particle moves in the search area with a speed that is based on previous experience from the best solution. Velocity (v_i) in PSO method has three parts, namely the momentum, cognitive, and social parts. The balance between these will be determining the performance of this PSO. Parameter c_1 and c_2 determine the value of taking p_{best} and g_{best}, while value of r_1 and r_2 help in getting variation value p_{best} and g_{best}. If a particle reaches the best position to produce the optimal value of the other particles will move directly toward the best position. Based on the concept of the PSO, the mathematical equations can be formulated as follows

update particle velocity:

$$v_{i}^{k+1} = v_{i}^{k} + c_1 r_1 \left(p_{best,i} - x_{i}^{k} \right) + c_2 r_2 \left(g_{best} - x_{i}^{k} \right)$$

update particle velocity:

$$x_{i}^{k+1} = x_{i}^{k} + v_{i}^{k+1}$$

k is the value of the iteration or generation of particles, whereas i indicates the ith particle of a collection of particles. To better know the PSO optimization method then created a flowchart shown in Fig. 4.

The reason of using algorithm is based on the problems related of using stabilizer in that own operating conditions. Another reason is that parameters very large in power systems and mathematical models of power system are not linear and not known in detail [6]. To overcome that problem above, manual tuning or using algorithm is used to get solution. The use of PSO method is to find the value of the parameter DIPSS and CES which is used to accelerate the acquisition value of the stabilizer parameters.

Parameters of DIPSS will be seek is time constant of the block circuit diagram lead-lag, while a constant value of the transducer circuit and tuned washout block diagram own until getting good grades. In CES device only K_{ces} will be optimized by PSO.
IV. SIMULATION AND RESULT

Single Machine Infinite Bus (SMIB) is used in system test. To test effectivity of CES DIPSS that have been optimized using PSO, then system is given disturbance. The disturbance in this system is load change at 0.03 p.u. Index performance which used to test stability system is Integral of Time multiplied Absolute Error (ITAE). ITAE defined as

\[ITAE = \int_0^\infty t |\Delta \omega(t)| dt \]

(3)

The simulation results only consider the overshoot and settling time of response changes in speed SMIB. The simulation was taken from the best with 20 times trials. Each simulations in this systems model only 20 seconds. Fig. 5 shows the graph of the convergence of all particles. Convergence is achieved at iteration 42. This shows that the minimum error is achieved or optimum value of DIPSS parameter is obtained in 42th iteration.

![Fig. 5. Convergence of PSO graphic](image)

From Fig. 6 indicated that the response of changes in speed between using CES DIPSS PSO, DIPSS PSO, PSS and without control. The response of the system once installed CES DIPSS who tuned by PSO showed the best performance of the other. This can be seen from the overshoot and settling time for speed change system. Systems with uncontrolled has -0.02387 p.u in overshoot and has settling time in 16.37 seconds. Systems using PSS has -0.02402 p.u overshoot and settling time in 13.68 seconds. Systems that use DIPSS which have been optimized using PSO showed a response overshoot and settling time that is equal to -0.02459 p.u and 4.631 seconds. While systems that use CES DIPSS which have been optimized using PSO showed a response overshoot and settling time that is equal to -0.01587 p.u and 4.068 seconds. Results of simulation for the overshoot and settling time of speed deviation shown in Table I

<table>
<thead>
<tr>
<th>System</th>
<th>Overshoot (pu)</th>
<th>Settling Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>uncontrolled</td>
<td>-0.02405</td>
<td>16.37</td>
</tr>
<tr>
<td>PSS</td>
<td>-0.02458</td>
<td>13.68</td>
</tr>
<tr>
<td>DIPSS PSO</td>
<td>-0.02385</td>
<td>4.631</td>
</tr>
<tr>
<td>CES DIPSS PSO</td>
<td>-0.01587</td>
<td>4.068</td>
</tr>
</tbody>
</table>

V. CONCLUSION

Results obtained from the use of CES DIPSS which tuned using PSO in SMIB very effective and speed up the system stability. This can be seen from the overshoot and settling time of response to changes in speed. Application of CES DIPSS PSO to reduce the overshoot of 0.008 p.u when compared with uncontrolled and has 0.000798 p.u and when compared with the DIPSS PSO. Improvements to the settling time by using CES DIPSS PSO very good that is equal to 12.3 seconds faster with uncontrolled, 9.049 seconds with PSS, and 0.563 seconds with DIPSS PSO.

VI. REFERENCES

APPENDIX

PSO parameter
Number of particle : 100
Number of variable : 5
c1 = 2 ; c2 = 2 ; w = 0.9

SMB parameter
K1 = 0.5995; K2 = 0.9263; K3 = 0.5924; K4 = 0.4319; K5 = -0.087;
K6 = 0.6004; H = 4; D = 0; Td = 5.044; Tp = 0.05; Kp = 50

PSS parameter
Twc1 = 0.381; Twc2 = 0.5; T1 = 0.05; T2 = 0.35; Kv = 12; Vmax = 0.15;
Vmin = -0.15

DIPSS parameter
T1 = 1; T2 = 1.1; R = 0.005; Tc = 0.037; T3 = 0.3; T4 = 7; T5 = 0.05;
T6 = 0.02; Twc = 10; Tw = 0.9; Ks1 = 0.95; Ks2 = 0.05; n = 1;
m = 5;

NUMENCLATURE
 CES parameter
Kvd = 0.1; Tdc = 0.05; C = 1; R = 100; Edo = 0.5; Ka = 46.9613;
Kces = 58.9286 Particle swarm optimization (PSO)
v = particle velocity in i
x = particle position in i
r1, r2 = random constant
w = particle weight
pbest = local optimum in i
gbest = global optimum in i
c1 = cognitive accelerate coefficient
c2 = social accelerate coefficient

Dual input Power System Stabilizer (DIPSS)
T1, T2, T3, T4, T5, T6, T7, T8, T9 = time constant lead-lag circuit
ks1, ks2 = multiplied gain of DIPSS
n, m = value of grade filter torque