

FULL PAPER

ISBN: 978-602-97462-2-8

LIST OF CONTENT

PREFACE	i
WELCOMING SPEECH FROM ITS PRESIDENT	iii
KEYNOTE AND INVITED SPEAKERS	
Seismic Isolation for Housing, Schools and Hospitals in The Urban Environment	1
James M. Kelly and Dimitrios Konstantinidis	
The Role of IAEE in A Seismically Perilous World	11
Polat Gülkan	
Background, Historical Development, and Key Role of Lateral Steel in Enhancing	17
Ductility of RC Members	
P. Suprobo, Tavio, B. Suswanto, and D. Iranata	
Cumulative Ductility Under Earthquake Loads	31
Adang Surahman	
Lessons for Building Safety Evaluation Systems from The 2010 Canterbury	45
Earthquake and Aftershocks	
C. W. K. Hyland and S. Wijanto	
Experimental Study and Evaluation on The Seismic Behavior of Coupling Beams	55
E. Lim, C.H. Cheng, and S.J. Hwang	
Some Methods to Develop Seismic Vulnerability Functions for Loss Modeling	67
Keith Porter	
The Role of Earthquake Vulnerability Research in Risk Mitigation	69
Mark Edwards	

Tehran Seismic Risk and New Hazard-Compatible Urban Planning and School Safety	85
Program	
Mohsen Ghafory-Ashtiany	
A Practice-Oriented Method for Nonlinear Seismic Analysis of Building Structures	101
P. Fajfar and M. Kreslin	
Some Recent Efforts in Earthquake Hazard and Risk Analyses for Disaster Risk	113
Reduction in Indonesia	
I Wayan Sengara, Masyhur Irsyam, Indra D. Sidi, Widiadnyana Merati, Krishna S.	
Pribadi, Made Suarjana, Mark Edwards	
Detrofitting of St. Lee Charel in Dedong Demograd by The Soutember 20, 2000 West	131
Retrofitting of St. Leo Chapel in Padang, Damaged by The September 30, 2009 West Sumatra Earthquake	131
•	
Teddy Boen and Lenny	
Response of Singapore Buildings to A Giant Earthquake in Sumatra	143
Tso-Chien Pan, Kusnowidjaja Megawati, and Key Seng Goh	
A. Case Histories in Earthquake Engineering Design and Construction	
Assessment of Reinforced Concrete Bridge Under Earthquake Resistance Design	A-1
Considering Corrosion Effect	
A.B.Delima, Y-C. Ou, IGP. Raka	
Synthetic Ground Motion Compatible With SNI-02-1726-2002	A-9
Paulus Karta Wijaya , Daisy Natania	
B. Case Histories in Recent Earthquake	
Strong Ground Motion by September 30, 2009 Pariaman Earthquake and Damage to	B-1
Large Scale Buildings	
Mulyo H. Pradono, Yozo Goto, Rusnardi P. Rahmat,	
Akio Hayashi, and Kazuhiro Miyatake	

Lessons Learned from the 2010 Canterbury Earthquake and Aftershocks, New Zealand Sugeng Wijanto, Clark W.K. Hyland and Takim Andriono	B-11
Seismic Performance Evaluation of an R/C Beam-Column Joint Damaged by the 2009 West Sumatra Earthquake Yasushi Sanada, Yoshiaki Nitta, Takuya Tomonaga, Yuta Sashima and Maidiawati	B-19
C. Community-based Disaster Risk Management	
Group Decision in Reducing Impact of Natural Disaster Christiono Utomo and Arazi Idrus	C-1
Lessons for Building Safety Evaluation Systems from the 2010 Canterbury Earthquake and Aftershocks Clark W.K. Hyland and Sugeng Wijanto	C-9
Strategy for Managing Disaster of Sidoarjo Mudflow I Putu Artama Wiguna and Amien Widodo	C-19
D. Geotechnical Earthquake Engineering	
Use Of Microtremors For Site Effects Evaluation In Singapore Cheng Zhu, Kusnowidjaja Megawati, and Meya Yanger Walling	D-1
Local Site Effect of a Landslide in Jember Based On Microtremor Measurement Dwa Desa Warnana, Ria Asih Aryani Soemitro Widya Utama and Alain Tabbagh	D-11
Depth Estimation of Seismic Bedrock of the Kanto Sedimentary Basin of Japan by the Nonstationary Ray Decomposition Method Haitao Zheng and Kusnowidjaja Megawati	D-17
Characterization of Sediment Cover Based on Fundamental Frequency - Case Study of Surabaya, Padang and Pariaman Meya Yanger Walling and Kusnowidjaja Megawati	D-25

Random Vibration Theory (Rvt) Based Seismic Site Response Analysis Sindhu Rudianto	D-31
Sinanu Ruaianio	
E. Non-engineered Buildings	
Simple House Earthquake-Resistant With Precast System	E-1
Harun Alrasyid, Munarus Suluch	
Comparing Damage to Building Structures Due to the 2009 West Java Earthquake in Indonesia	E-9
H. Choi, Y. Sanada, M. Kuroki, M. Sakashita, M. Tani, Y. Hosono,	
S. Musalamah and F. Farida	
Study The Traditional Joint Of Bamboo Houses In The Earthquake by Tilting Table <i>Purwito</i>	E-19
F. Performance-based Design	
Behavior of R/C Columns Confined With Code Non-Compliance Confining	F-1
Reinforcement Plus Supplemental Pen-Binder Under Axial Concentric Loading	
A. Kristianto, I. Imran and M. Suarjana	
Effect of Suppressing Number of DOF on the Response of NLTHA and MPA of a	F-11
Rigid Connection RC Multi Span Bridge under Strong Earthquake Motion	
B. Budiono, E. Yuniarsyah	
Seismic Performance of Structures With Vertical Geometric Irregularity Designed	F-21
Using Partial Capacity Design	
I. Muljati, B. Lumantarna	
Seismic Risk of Important Buildings (Case: Hospitals in Indonesia Recent	F-29
Earthquakes)	
I. Satyarno	

Tire Base Foundation For Earthquake Resistant Houses Ingemar Saevfors	F-37
The Behaviour of Cross Nail-Laminated Timber (CNLT) Shearwall Under Cyclic Loading J.A. Tjondro and A. Onky	F-45
Pushover Analysis of Jacket Structure in Offshore Platform Subjected to Earthquake with 800 Years Return Period M. Irmawan, B. Piscesa and I. A. Fada	F-55
In-elastic Performance of 2D-Two Bay Ordinary Concentrically Braced Steel Frame P. Pudjisuryadi, and Tavio	F-65
Optimization of Sensor Locations for Bridge Seismic Monitoring System Using Genetic Algorithms Reni Suryanita, Azlan Adnan	F-71
Evaluation of Performance of Six-Story Structures Using Pushover Analysis in Soft Soil and Medium Soil S. A. Nurjannah, Y. Megantara, C. Yudha	F-79
A Numerical Study of Three Dimensional Structural Models Controlled by Passive Tuned Mass Dampers Against Seismic Excitations S.Shahrokhi , and F.R.Rofooi	F-89
Investigation on Performance of Active Tuned Mass Dampers (ATMD) on Vibration Control of Three-Dimensional Structural Control <i>S.Shahrokhi</i> , and <i>F.R.Rofooi</i>	F-97
Comparing Different Bottom Shear Stress Calculation Method for Irreguler Waves Taufiqur Rachman and Suntoyo	F-107

Prediction of Peak Stress for Concrete Confined with Welded Wire Fabric	F-117
B. Kusuma, Tavio, and P. Suprobo	
G. Probabilistic and Deterministic Seismic Hazard assessment	
Community-Based Open Standards and Data for Hazard Modeling in the Global	G-1
Earthquake Model	
M. Pagani, H. Crowley, R. Pinho	
H. Retrofit, Rehabilitation, and Reconstruction	
Shear Strengthening Effect of RC Beams Retrofitted by CFRP Grid and PCM Shotcrete	H-1
A. Arwin Amiruddin	
Comparison Study of Concentrically Braced Frames (CBF) and Buckling Restrained	H-9
Braced Frames (BRBF) on Steel Structure Building Subjected to Earthquake Load	
B. Suswanto and D. Iranata	
Finite Element Modeling for Reinforcing Steel Subjected to Reversed Cyclic Loading	H-19
with Severe Tensile and Compressive Strain Demands	
D. Iranata and B. Suswanto	
Seismic Response on Jointless Composite Retrofitted Bridges Using Link Slab	H-27
H. Sugihardjo	
Fracture Mechanics Approach in Determining Pressure and Injection Time To Repair	H-37
Concrete Cracks	
Jonbi, Ivindra Z Pane	

A Study on The Effect of Earthquake Resistant Reinforcement Using Ground H-45 Solidification Body for Underground Structure

K.Urano, Y. Adachi, T. Nishimura, M. Kawamura, and J. Tanjung

Behavior of Precast Beam Connections For Seismic-Resistant Houses Under Cyclic Loading	H-51
L. S. B. Wibowo, Tavio, H. Soegihardjo, E. Wahyuni, and D. Iranata	
Method for Improving Adhesion Between Concrete Structures Surface and External	H-61
Fiber System Reinforcing	
Mauricio Iván Panamá, Amando Padilla, Antonio Flores, Luis Rocha	
Alternative Strategies to Enhance The Seismic Performance of a Non-Ductile RC	H-71
Structure	
Marco Valente	
Dissipative Friction Devices for Seismic Upgrading of Precast Buildings	H-83
Marco Valente	
Seismic Protection of Steel Structures by Fluid Viscous Devices	H-93
Marco Valente	
Rehabilitation of Earthquake-Damaged and Seismic-Deficient Structures Using Fibre-	H-105
Reinforced Polymer (FRP) Technology	
Ong Wee Keong	
Bamboo Use for Earthquake Resistance Housing	H-111
Sri Murni Dewi	
Behavior of Precast Column Connections For Seismic-Resistant Houses Under Cyclic	H-119
Loading	
Tavio, H. Soegihardjo, E. Wahyuni, D. Iranata, and L. S. B. Wibowo	
Incremental Rapid Visual Screening Method for Seismic Vulnerability Assessment of	H-127
Existing Buildings	
Yadollahi M Adnan A and Rosli M Z	

Transverse Stress Distribution in Concrete Columns Externally Confined by Steel	H-139
Angle Collars	
P. Pudjisuryadi, Tavio, and P. Suprobo	
I. Seismic and Tsunami Disaster Mitigation and Management	
Damage Mitigation Using Structural Health Monitoring Based on Wireless Sensor	I-1
Networks Technology	
Amin Suharjono, Wirawan, Gamantyo Hendrantoro	
Minimizing Earthquake Threat To School Building By Using Sustainable Visual	I-11
Assessment And Detail Analysis	
Choo Kok Wah, Dr. Rozana Zakaria and Mohd. Zamri Bin Ramli	
Evaluation of Building Structure Using Shearwall on Soft Soil By Performance-Based	I-19
Design Method	
Christanto Yudha , Yoga Megantara, S.A Nurjannah	
Tsunami Evacuation Simulation for Disaster Awareness Education and Mitigation	I-29
Planning of Banda Aceh City	
Muzailin Affan, Yozo Goto and Agussabti	
Test of Coupling Beam Systems with an Energy Dissipation Device	I-45
Taesang Ahn, Youngju Kim and Sangdae Kim	
Evacuation Response of the People in Meulaboh after the May 9, 2010 Earthquake	I-51
Yudha Nurdin, Diyah K. Yuliana, Ardiansyah, Muzailin Affan and Yozo Goto	
J. Seismic Zonation and Microzonation	
Shear-Wave Velocity Structure Underneath Surabaya Inferred From Microtremor	J-1
Survey	
Kusnowidjaja Megawati, Xiaofang Deng, Meya Yanger Walling and Hiroaki	

Yamanaka

Site Response Evaluation for Earthquake Hazard Analysis of Surabaya Metropolitan M. Farid Ma'ruf, Amien Widodo, and Suwarno						
Soil-Structure Resonance Base on Observations of Horizontal-To-Vertical Spectral Ratios of Microtremor (Case Study: Pare, Kediri District-East Java) Triwulan, W. Utama, D.D. Warnana and Sungkono	J-15					
K. Soil-structure Interaction						
Effect of Soil Condition on Response Control of Adjacent Structures Connected by Viscous Damper Chirag Patel	K-1					
L. Tsunami Modeling						
Numerical Modeling of Tsunami	L-1					
M. Cahyono, Gneis Setia Graha and Andi Abdurachim						
M. Tsunami Early Warning System						
N. Disaster Management						
Visualisation in The Implementation of Seismic Codes on Residential Houses as an Educational Tool For Construction Actors Setya Winarno	N-1					
O. Any Related Topics						
Identification of Dynamic Characteristics of a Building Using Recorded Seismic	O-1					
Response Data						
Agung Budipriyanto						
Development of Artificial Neural Networks With Different Value of Learning Rate and Momentum For Predicting The Compressive Strength of Self Compacting Concrete at 28 Days **Althorad Surveydia, Tripoplan, and Puio 4ii.	O-1					
Akhmad Suryadi, Triwulan, and Pujo Aji						

Response of Adjacent Structures Connected by Friction Damper					
Chirag Patel					
Progressive Collapse of RC Frames Under Blast Loading	O-33				
Elvira					
Structural Behaviour of Submerged Floating Tunnels With Different Cable	O-43				
Configurations Under Seismic Loading					
Endah Wahyuni, IGP Raka, Budi Suswanto and Ery Budiman					
Study of Eccentricity Effects on Reduction Factors of Square Reinforced Concrete	O-53				
Columns Using Visual Basic 6.0 Program					
Iman Wimbadi, Tavio, and Raditya Adi Prakosa					
Numerical Simulation of Seismic Wave Propagation Near a Fluid-Solid Interface	O-63				
Pranowo, Y. A. Laksono, W. Suryanto, Kirbani SB					
Behavior of Hybrid Reinforced Concrete T-beams with Web Opening under Monotonic	O-77				
Loading					
Tanijaya, J.					

BEHAVIOR OF PRECAST COLUMN CONNECTIONS FOR SEISMIC-RESISTANT HOUSES UNDER CYCLIC LOADING

TAVIO^{1*}, H. SOEGIHARDJO², E. WAHYUNI³, D. IRANATA⁴ and L. S. B. WIBOWO⁵

ABSTRACT

Connections of structural members are very important elements in the design and construction of seismic-resistant buildings. The quality of the connection governs the failure or collapse of a building. Idealization of the design and behavior of Column Connections (CC) in precast buildings is very crucial in providing a sound and ductile structure. Precast concrete system has several advantages for its construction quality particularly in terms of material due to its manufacturing process with better quality assurance and control in the making process. Other advantages are faster installation, and more practical in construction process.

One of the structural members in a building structure is a column. The column is mainly intended to resist the internal bending moments which may cause tension failure and the internal shear forces that can lead to abrupt brittle failure. Hence, this study concentrated on the behavior of column's precast connection in seismic-resistant houses. The connection was a dry connection. The advantages of using dry connection are very quick and simple in installation without any casting during construction process. The dry connection system uses bolted steel rods to connect between column members and column stubs.

Specimen KP 2 (two-story house) produced good ductility. From the experimental testing, this specimen has provided full ductility. On the other hand, Specimen KP 1 (single-story house) produced limited ductility and the specimen can be considered to have limited ductility.

Keywords: column, cyclic loading, dry connections, precast concrete, seismic-resistant houses.

¹ Department of Civil Engineering, Sepuluh Nopember Institute of Technology (ITS)

² Department of Civil Engineering, Sepuluh Nopember Institute of Technology (ITS)

³ Department of Civil Engineering, Sepuluh Nopember Institute of Technology (ITS)

⁴ Department of Civil Engineering, Sepuluh Nopember Institute of Technology (ITS)

⁵ Department of Civil Engineering, Sepuluh Nopember Institute of Technology (ITS)

^{*} Corresponding author: E-mail: tavio@ce.its.ac.id

1. INTRODUCTION

In recent years the Indonesian government preoccupied with the problem of prevention of disaster victims, especially due to the earthquake that causes most material losses and casualties. Carrying more than 5 large earthquakes occurred in less than 6 years has caused many families lost their homes or place of residence as the main support its activities. This makes the government needs to immediately relocate the victims into a new residential location is feasible for them to immediately return to normal activities. This means they need to rebuild homes for residents in quick time and in large numbers.

As an innovation to overcome this then propose a model of seismic-resistant houses of precast concrete. Advantages using precast, among others, his strength is assured (as printed in the factory), can speed execution time (easy installation), to beautify the structure and can be mass produced (in large numbers) that can be applied to build a house in large quantities (David, Philips & Wiliam, 1978). Because it can accelerate implementation time, it certainly will directly influence the cost savings (Alfred, 2001).

Planning a column as the main support structures need to be considered carefully to ensure the stability of the structure when an earthquake happens again. Although the beams and plates on it are very strong and stiff, but if the column is not strongly support the weight of the whole structure will collapse (Wiryanto, 2005).

In this research will be conducted experimental tests of a dry joint connection system that uses a bolt steel rods, which are used as joints between precast concrete columns. Excess dry joint was to accelerate implementation time, about 25%-40% when compared with in situ concrete joint (Noorhidana, 2002). The columns connection had an important role in determining the performance of structures, especially in the aspect of ductility that is needed in the design of earthquake resistant buildings.

2. RESEARCH SIGNIFICANCE

In this research, the experimental behavior of precast column connection for earthquake-resistant house single-story house and two-story house under cyclic loading. The objectives of this research are to observe the behavior of the connection, including crack pattern/damage at the specimens, plastic hinge location, load-displacement relationship and ductility.

3. EXPERIMENTAL PROGRAM

In the test program, the parameters investigated are dimension, longitudinal bars and anchor bolt. Two precast column connection for single-story house and two-story house were designed and tested.

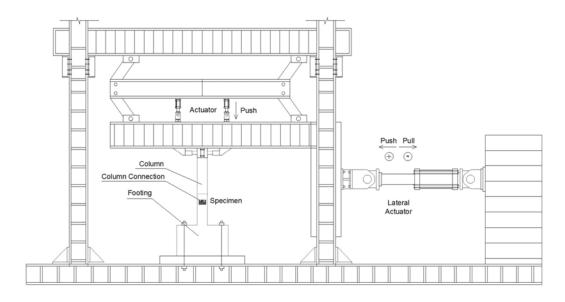


Figure 1. Test Setup for Experimental Study

3.1. Test Setup

Figure 1 shows a schematic view of the setup. Loading frame with axial capacity 1000 KN and lateral capacity of 2000 KN. Data logger recorded measurement from load cell, strain gauges and LVDT. Linier Variable Displacement Transducers (LVDT), to measure displacement occurred at the specimens and at the loading frame during experiment. Strain gauges installed on column longitudinal rebar, column transverse rebar and anchor bolt.

Quasi static reserved cyclic loading was applied to the specimens in increment, downward for compression and upward for tension, using displacement control system. The displacement sequence for each specimen is given in Figure 2.

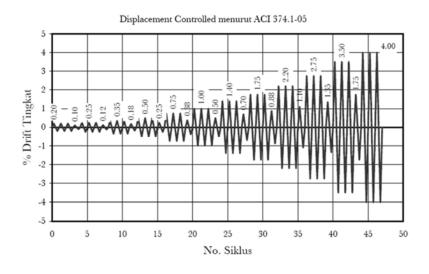


Figure 2. Cyclic Loading

3.2. Specimens

Two specimens were used in this experimental. These specimens differed in column type and anchor bolt connection. Specimen 1 (KP1) is a column for single-story house and Specimen 2 (KP2) is a column for two-story house. The structural dimensions of the specimens are presented in Table 1.

3.3. Material Properties

The average compressive strength of at least 13 concrete cylinders is 24.6 MPa. The steel reinforcement, anchor bolt and steel profile used in this study have modulus of elasticity (E_s) of 200.000 MPa. The steel reinforcement used are plain rebar of $\emptyset 8$ mm with $f_y = 350$ MPa, plain rebar of $\emptyset 10$ mm with $f_y = 384$ MPa and deform rebar of 13 mm with $f_y = 416$ MPa. The anchor bolt use 13 mm and 16 mm with $f_y = 594$ MPa.

Table 1: Details of test specimens

Specimen	Configuration	Axial Force	Dimension	Concrete Cover	Long. reinforcement	Trans. reinforcement	Anchor Bolt	L Plate
Specifici	Comiguration	(kN)	(mm)	(mm)	Size and number	Size and spacing	Size and number	(mm)
KP 1		15.696	150 x 150	25	10 No. 4	8 at 50	13 No. 4	L 40x40x4
KP 2		117.72	200 x 200	25	13 No. 8	8 at 50	16 No. 4	L 50x50x5

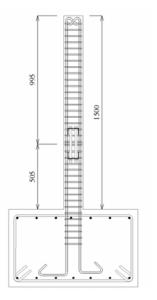


Figure 3. Specimen KP1

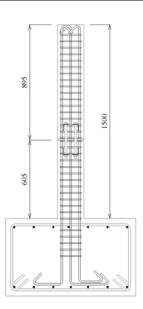


Figure 4. Specimen KP2

4. TEST RESULT

4.1. General behavior

The behavior of the column can be presented by lateral load versus lateral displacement Δ curve. Typical lateral load-displacement curves are shown in Figs. 7 and 8. In all specimens, first crack occurred around column connection.

4.2. Crack pattern

First crack in the specimen KP 1 occurs when pull load at 3.679 KN that occurred in the area 9A column and the first crack of the push load when the load at 3.848 KN that occurred in the area 9D column. The crack pattern of specimen KP 1 at the end of the loading can be seen in Figure 5.

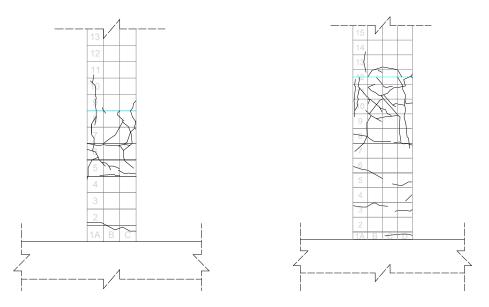


Figure 5. Crack pattern for KP 1

Figure 6. Crack pattern for KP 2

First crack in the specimen KP 2 occurs when pull load at 12.26 KN that occurred in the area 12D column and the first crack of the push load when the load at 12.65 KN that occurred in the area 12A column. The crack pattern of specimen KP 2 at the end of the loading can be seen in Figure 6.

4.3. Load-displacement relationship

Maximum load for specimen KP 1 while push load is 10.3 KN occurred at $\Delta = 67.54$ mm (drift 5%) and maximum load while pull load is 10.98 KN occurred at $\Delta = 92.1$ mm (drift 6,8%)

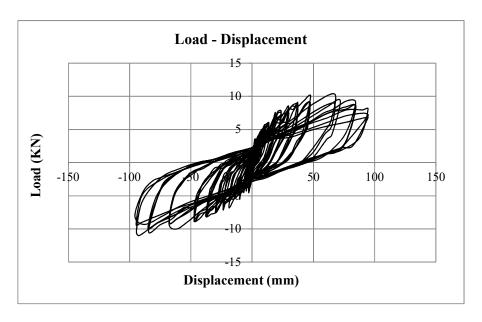


Figure 7. Hysteretic Curve Load-Displacement relationship specimen KP 1

Maximum load for specimen KP 2 while push load is 28.47 KN occurred at $\Delta = 67.78$ mm (drift 5%) and maximum load while pull load is 33.06 KN occurred at $\Delta = 73.58$ mm (drift 5.4%)

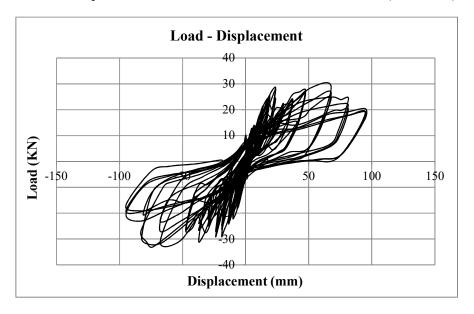


Figure 8. Hysteretic Curve Load-Displacement relationship specimen KP 2

4.4. Displacement Ductility

Deflection value of reinforcement is taken as the first yielding of reinforcement experienced when the load 6.475 KN for pushing load with deflection value of $\Delta y = 17.24$ mm and 6.769 KN of pulling load with a deflection value of $\Delta y = 18.94$ mm. For ultimate displacement while push load is taken from 80 % of peak push load that is 8.24 KN with displacement $\Delta u = 91.92$ mm, the obtained value displacement ductility amounted $\Delta \mu = 5.33$. For ultimate displacement while pull

load is taken from 80 % of peak pull load that is 8.79 KN with displacement $\Delta u = 94.74$ mm, the obtained value displacement ductility amounted $\Delta \mu = 5.00$. (shown in Figure 9)

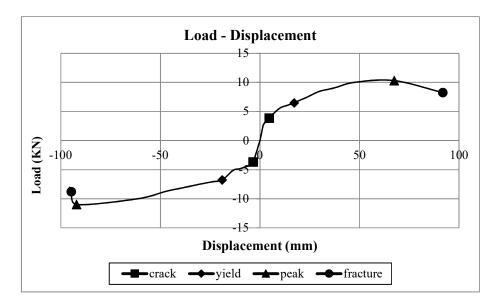


Figure 9. Envelope Curve Load-Displacement relationship specimen KP 1

Deflection value of reinforcement is taken as the first yielding of reinforcement experienced when the load 15.892 KN for push load with deflection value of $\Delta y = 10.16$ mm and 22.073 KN of pull load with a deflection value of $\Delta y = 10,16$ mm. For ultimate displacement while push load is taken from 80 % of peak push load that is 22.838 KN with displacement $\Delta u = 86.84$ mm, the obtained value displacement ductility amounted $\Delta \mu = 8.55$. For ultimate displacement while pull load is taken from 80 % of peak pull load that is 26.44 KN with displacement $\Delta u = 79.83$ mm, the obtained value displacement ductility amounted $\Delta \mu = 7.86$. (shown in Figure 10)

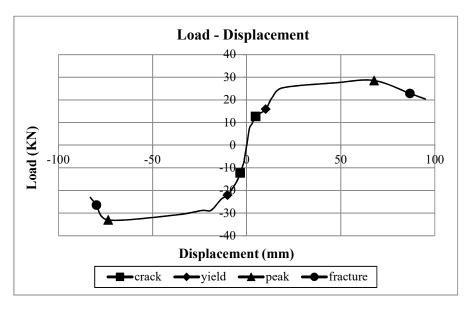
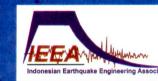


Figure 10. Envelope Curve Load-Displacement relationship specimen KP 2

5. CONCLUSIONS

Based on the experimental result, the following conclusions can be made for specimens KP 1 (single-story house). For push load displacement ductility amounted $\Delta\mu=5.33$, for pull load displacement ductility amounted $\Delta\mu=5.00$. From the test, it can be concluded that the connection to have full ductility. Result of specimens KP 2 (two-story house), for push load displacement ductility amounted $\Delta\mu=8.55$ and pull load displacement ductility amounted $\Delta\mu=7.86$. The specimen can be considered to have full ductility. For all specimens, first crack occur around the beam-column joint.

6. ACKNOWLEDGMENTS


The research was supported by Laboratory of Concrete and Building Materials-ITS Surabaya and Research Center and Development of Human Settlement-Cileunyi, Bandung for specimen preparation and testing.

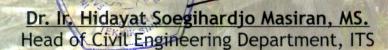
7. REFERENCES

- B.S. Smith (1963), Infilled Frames, Tesis Ph.D., University of Bristol.
- D.V. Mallick, dan R.T. Severn (1967), "The Behaviour of Infilled Frames Under Static Loading", Institution of Civil Engineering, Vol. 38, hal. 639-956.
- Mulyanto, (2007), Pedoman Membangun Rumah Sederhana Tahan Gempa, Universitas Gadjah Mada, Jogjakarta.
- Noorhidana, V.A., Sugiri, S.M. dan Soemardi, B.W., "Analisis Eksperimental Kolom Pracetak Dry Joint Akibat Beban Siklik Lateral," Jurnal Teknik Sipil, Vol. 8, Juni 2002, hal. 40-50.
- Purwono, Rachmat (2005), Perencanaan Struktur Beton Bertulang Tahan Gempa (Sesuai SNI-1726 dan SNI-2847 Terbaru), ITS Press, Surabaya.
- Tirtajaya, R., Tavio dan Suprapto, K. 2010. "Perilaku dan Perancangan Kolom Pracetak untuk Rumah Sederhana Cepat Bangun Tahan Gempa dengan Sistem Rangka Berdinding Pengisi (Infilled- Frame)", Surabaya. Institut Teknologi Sepuluh Nopember.
- SNI 03-1726-2002, Tata Cara Perencanaan Ketahanan Gempa untuk Bangunan Gedung, Badan Standarisasi Nasional, Bandung.
- SNI 03-2847-2002, Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung, Badan Standarisasi Nasional, Bandung.
- Wiryanto Dewobroto, (2005), Aplikasi Rekayasa Konstruksi dengan Visual Basic 6.0 (Analisis dan Desain Penampang Beton Bertulang sesuai SNI 03-2847-2002), PT. Elex Media Komputindo, Jakarta.
- Yee, Alfred A., "Structural and Economic Benefits of Precast/Prestressed Concrete Construction," PCI Journal, Vol. 46, No.4, Juli 2001, hal. 34-42.

CERTIFICATE OF ATTENDANCE

The 2nd International Conference on Earthquake Engineering and Disaster Mitigation (ICEEDM-II 2011)

"Seismic Risk Reduction and Damage Mitigation for Advancing Earthquake Safety of Structures"


19 - 20 July 2011, Surabaya, Indonesia

Is hereby granted to

LEONARDUS SETIA BUDI WIBOWO

AS a

PRESENTER

Chairman, Organizing Committee

